Donghyun Lee, Sarah N. Sparrow, Matteo Willeit, Paulo Ceppi, Myles R. Allen
{"title":"量化 1.5°C 和 2°C 适应性排放情景下二氧化碳和非二氧化碳对气候变化的贡献","authors":"Donghyun Lee, Sarah N. Sparrow, Matteo Willeit, Paulo Ceppi, Myles R. Allen","doi":"10.1029/2024EF005580","DOIUrl":null,"url":null,"abstract":"<p>The individual contributions of various human-induced forcings under scenarios compatible with the Paris Agreement targets are highly uncertain. To quantify this uncertainty, we analyze three types of models with physical parameter perturbed large ensembles under global warming levels of 1.5 and 2.0°C. The scenarios use adaptive CO<sub>2</sub> emissions, while non-CO<sub>2</sub> emissions are prescribed. The residual emission budgets in the scenarios are measured in terms of CO<sub>2</sub> forcing equivalent (CO<sub>2</sub>-fe). Our simulations quantify approximately 0.8 (0.2–1.3 for a 90% confidence interval) and 1.9 (0.9–3.0) TtCO<sub>2</sub>-fe for the 1.5 and 2.0°C targets by the end of the 21st century. About 37.5% (73.7%) of the budget for 1.5°C (2.0°C) originates from the CO<sub>2</sub> emission pathways, highlighting the importance of non-CO<sub>2</sub> forcings. Aerosols dominate the uncertainty in non-CO<sub>2</sub> contributions to global responses in both temperature and precipitation. Our modeling results underline the need to constrain the response to each climate forcing, particularly aerosol, to build an accurate mitigation and adaptation plan under the pledges of the Paris Agreement. Moreover, we demonstrate robust differences in global and regional temperature and precipitation responses between the higher and lower CO<sub>2</sub> emission scenarios, highlighting the significance of carbon neutrality.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"13 3","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF005580","citationCount":"0","resultStr":"{\"title\":\"Quantifying CO2 and Non-CO2 Contributions to Climate Change Under 1.5°C and 2°C Adaptive Emission Scenarios\",\"authors\":\"Donghyun Lee, Sarah N. Sparrow, Matteo Willeit, Paulo Ceppi, Myles R. Allen\",\"doi\":\"10.1029/2024EF005580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The individual contributions of various human-induced forcings under scenarios compatible with the Paris Agreement targets are highly uncertain. To quantify this uncertainty, we analyze three types of models with physical parameter perturbed large ensembles under global warming levels of 1.5 and 2.0°C. The scenarios use adaptive CO<sub>2</sub> emissions, while non-CO<sub>2</sub> emissions are prescribed. The residual emission budgets in the scenarios are measured in terms of CO<sub>2</sub> forcing equivalent (CO<sub>2</sub>-fe). Our simulations quantify approximately 0.8 (0.2–1.3 for a 90% confidence interval) and 1.9 (0.9–3.0) TtCO<sub>2</sub>-fe for the 1.5 and 2.0°C targets by the end of the 21st century. About 37.5% (73.7%) of the budget for 1.5°C (2.0°C) originates from the CO<sub>2</sub> emission pathways, highlighting the importance of non-CO<sub>2</sub> forcings. Aerosols dominate the uncertainty in non-CO<sub>2</sub> contributions to global responses in both temperature and precipitation. Our modeling results underline the need to constrain the response to each climate forcing, particularly aerosol, to build an accurate mitigation and adaptation plan under the pledges of the Paris Agreement. Moreover, we demonstrate robust differences in global and regional temperature and precipitation responses between the higher and lower CO<sub>2</sub> emission scenarios, highlighting the significance of carbon neutrality.</p>\",\"PeriodicalId\":48748,\"journal\":{\"name\":\"Earths Future\",\"volume\":\"13 3\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF005580\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earths Future\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EF005580\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF005580","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Quantifying CO2 and Non-CO2 Contributions to Climate Change Under 1.5°C and 2°C Adaptive Emission Scenarios
The individual contributions of various human-induced forcings under scenarios compatible with the Paris Agreement targets are highly uncertain. To quantify this uncertainty, we analyze three types of models with physical parameter perturbed large ensembles under global warming levels of 1.5 and 2.0°C. The scenarios use adaptive CO2 emissions, while non-CO2 emissions are prescribed. The residual emission budgets in the scenarios are measured in terms of CO2 forcing equivalent (CO2-fe). Our simulations quantify approximately 0.8 (0.2–1.3 for a 90% confidence interval) and 1.9 (0.9–3.0) TtCO2-fe for the 1.5 and 2.0°C targets by the end of the 21st century. About 37.5% (73.7%) of the budget for 1.5°C (2.0°C) originates from the CO2 emission pathways, highlighting the importance of non-CO2 forcings. Aerosols dominate the uncertainty in non-CO2 contributions to global responses in both temperature and precipitation. Our modeling results underline the need to constrain the response to each climate forcing, particularly aerosol, to build an accurate mitigation and adaptation plan under the pledges of the Paris Agreement. Moreover, we demonstrate robust differences in global and regional temperature and precipitation responses between the higher and lower CO2 emission scenarios, highlighting the significance of carbon neutrality.
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.