修正的 U 型传递函数:应用于帕金森病分类

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Suvita Rani Sharma, Birmohan Singh, Manpreet Kaur
{"title":"修正的 U 型传递函数:应用于帕金森病分类","authors":"Suvita Rani Sharma,&nbsp;Birmohan Singh,&nbsp;Manpreet Kaur","doi":"10.1111/coin.70036","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Transfer functions have a very important role in metaheuristic optimization-based feature selection algorithms as these functions map the continuous search space into binary space. The U-shaped transfer function (UTF) is one of the transfer functions used to solve the problem of feature selection. However, the UTF requires the selection of parametric values, which can vary for different types of data. To address this issue, an approach to select the parameters of the UTF has been proposed based on a time-varying adaption method, resulting in the modified U-shaped transfer function (MUTF). Furthermore, a methodology has been proposed to enhance feature selection and classification for Parkinson's disease by utilizing z-score normalization in conjunction with a modified U-shaped transfer function and the binary self-adaptive bald eagle search (MUTF-SABES) optimization algorithm. The z-score normalization has been used to mitigate issues caused by outliers. Also, the performance of the k nearest neighbor classifier is improved by selecting an optimal parameter value using the proposed MUTF-SABES algorithm. The effectiveness of the proposed methodology is validated on seven different Parkinson's disease datasets and compared with five state-of-the-art optimization algorithms: Salp Swarm algorithm, Harris Hawks optimization, equilibrium optimizer, aquilla optimizer, and Honey Badger algorithm, to evaluate its performance superiority. The results achieved using the proposed approach have been superior or analogous to the erstwhile algorithms for performance comparability. Friedman's mean rank test is used to check the statistical significance of the propounded approach. The lowest Friedman's mean rank value obtained using the proposed approach indicates that the proposed approach has the potential to become an alternative to other well-known strategies.</p>\n </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified U-Shaped Transfer Function: Applied to Classify Parkinson'S Disease\",\"authors\":\"Suvita Rani Sharma,&nbsp;Birmohan Singh,&nbsp;Manpreet Kaur\",\"doi\":\"10.1111/coin.70036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Transfer functions have a very important role in metaheuristic optimization-based feature selection algorithms as these functions map the continuous search space into binary space. The U-shaped transfer function (UTF) is one of the transfer functions used to solve the problem of feature selection. However, the UTF requires the selection of parametric values, which can vary for different types of data. To address this issue, an approach to select the parameters of the UTF has been proposed based on a time-varying adaption method, resulting in the modified U-shaped transfer function (MUTF). Furthermore, a methodology has been proposed to enhance feature selection and classification for Parkinson's disease by utilizing z-score normalization in conjunction with a modified U-shaped transfer function and the binary self-adaptive bald eagle search (MUTF-SABES) optimization algorithm. The z-score normalization has been used to mitigate issues caused by outliers. Also, the performance of the k nearest neighbor classifier is improved by selecting an optimal parameter value using the proposed MUTF-SABES algorithm. The effectiveness of the proposed methodology is validated on seven different Parkinson's disease datasets and compared with five state-of-the-art optimization algorithms: Salp Swarm algorithm, Harris Hawks optimization, equilibrium optimizer, aquilla optimizer, and Honey Badger algorithm, to evaluate its performance superiority. The results achieved using the proposed approach have been superior or analogous to the erstwhile algorithms for performance comparability. Friedman's mean rank test is used to check the statistical significance of the propounded approach. The lowest Friedman's mean rank value obtained using the proposed approach indicates that the proposed approach has the potential to become an alternative to other well-known strategies.</p>\\n </div>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":\"41 2\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.70036\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.70036","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modified U-Shaped Transfer Function: Applied to Classify Parkinson'S Disease

Transfer functions have a very important role in metaheuristic optimization-based feature selection algorithms as these functions map the continuous search space into binary space. The U-shaped transfer function (UTF) is one of the transfer functions used to solve the problem of feature selection. However, the UTF requires the selection of parametric values, which can vary for different types of data. To address this issue, an approach to select the parameters of the UTF has been proposed based on a time-varying adaption method, resulting in the modified U-shaped transfer function (MUTF). Furthermore, a methodology has been proposed to enhance feature selection and classification for Parkinson's disease by utilizing z-score normalization in conjunction with a modified U-shaped transfer function and the binary self-adaptive bald eagle search (MUTF-SABES) optimization algorithm. The z-score normalization has been used to mitigate issues caused by outliers. Also, the performance of the k nearest neighbor classifier is improved by selecting an optimal parameter value using the proposed MUTF-SABES algorithm. The effectiveness of the proposed methodology is validated on seven different Parkinson's disease datasets and compared with five state-of-the-art optimization algorithms: Salp Swarm algorithm, Harris Hawks optimization, equilibrium optimizer, aquilla optimizer, and Honey Badger algorithm, to evaluate its performance superiority. The results achieved using the proposed approach have been superior or analogous to the erstwhile algorithms for performance comparability. Friedman's mean rank test is used to check the statistical significance of the propounded approach. The lowest Friedman's mean rank value obtained using the proposed approach indicates that the proposed approach has the potential to become an alternative to other well-known strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信