修正的 U 型传递函数:应用于帕金森病分类

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Suvita Rani Sharma, Birmohan Singh, Manpreet Kaur
{"title":"修正的 U 型传递函数:应用于帕金森病分类","authors":"Suvita Rani Sharma,&nbsp;Birmohan Singh,&nbsp;Manpreet Kaur","doi":"10.1111/coin.70036","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Transfer functions have a very important role in metaheuristic optimization-based feature selection algorithms as these functions map the continuous search space into binary space. The U-shaped transfer function (UTF) is one of the transfer functions used to solve the problem of feature selection. However, the UTF requires the selection of parametric values, which can vary for different types of data. To address this issue, an approach to select the parameters of the UTF has been proposed based on a time-varying adaption method, resulting in the modified U-shaped transfer function (MUTF). Furthermore, a methodology has been proposed to enhance feature selection and classification for Parkinson's disease by utilizing z-score normalization in conjunction with a modified U-shaped transfer function and the binary self-adaptive bald eagle search (MUTF-SABES) optimization algorithm. The z-score normalization has been used to mitigate issues caused by outliers. Also, the performance of the k nearest neighbor classifier is improved by selecting an optimal parameter value using the proposed MUTF-SABES algorithm. The effectiveness of the proposed methodology is validated on seven different Parkinson's disease datasets and compared with five state-of-the-art optimization algorithms: Salp Swarm algorithm, Harris Hawks optimization, equilibrium optimizer, aquilla optimizer, and Honey Badger algorithm, to evaluate its performance superiority. The results achieved using the proposed approach have been superior or analogous to the erstwhile algorithms for performance comparability. Friedman's mean rank test is used to check the statistical significance of the propounded approach. The lowest Friedman's mean rank value obtained using the proposed approach indicates that the proposed approach has the potential to become an alternative to other well-known strategies.</p>\n </div>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"41 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified U-Shaped Transfer Function: Applied to Classify Parkinson'S Disease\",\"authors\":\"Suvita Rani Sharma,&nbsp;Birmohan Singh,&nbsp;Manpreet Kaur\",\"doi\":\"10.1111/coin.70036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Transfer functions have a very important role in metaheuristic optimization-based feature selection algorithms as these functions map the continuous search space into binary space. The U-shaped transfer function (UTF) is one of the transfer functions used to solve the problem of feature selection. However, the UTF requires the selection of parametric values, which can vary for different types of data. To address this issue, an approach to select the parameters of the UTF has been proposed based on a time-varying adaption method, resulting in the modified U-shaped transfer function (MUTF). Furthermore, a methodology has been proposed to enhance feature selection and classification for Parkinson's disease by utilizing z-score normalization in conjunction with a modified U-shaped transfer function and the binary self-adaptive bald eagle search (MUTF-SABES) optimization algorithm. The z-score normalization has been used to mitigate issues caused by outliers. Also, the performance of the k nearest neighbor classifier is improved by selecting an optimal parameter value using the proposed MUTF-SABES algorithm. The effectiveness of the proposed methodology is validated on seven different Parkinson's disease datasets and compared with five state-of-the-art optimization algorithms: Salp Swarm algorithm, Harris Hawks optimization, equilibrium optimizer, aquilla optimizer, and Honey Badger algorithm, to evaluate its performance superiority. The results achieved using the proposed approach have been superior or analogous to the erstwhile algorithms for performance comparability. Friedman's mean rank test is used to check the statistical significance of the propounded approach. The lowest Friedman's mean rank value obtained using the proposed approach indicates that the proposed approach has the potential to become an alternative to other well-known strategies.</p>\\n </div>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":\"41 2\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.70036\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.70036","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

传递函数在基于元启发式优化的特征选择算法中起着非常重要的作用,因为这些函数将连续搜索空间映射到二进制空间。u形传递函数(UTF)是用来解决特征选择问题的传递函数之一。但是,UTF需要选择参数值,这对于不同类型的数据可能有所不同。针对这一问题,提出了一种基于时变自适应的UTF参数选择方法,得到了改进的u型传递函数(MUTF)。此外,还提出了一种方法,利用z-score归一化结合改进的u形传递函数和二进制自适应秃鹰搜索(MUTF-SABES)优化算法来增强帕金森病的特征选择和分类。z-score归一化被用来减轻异常值引起的问题。此外,通过使用所提出的MUTF-SABES算法选择最优参数值,提高了k近邻分类器的性能。在7个不同的帕金森病数据集上验证了该方法的有效性,并与Salp Swarm算法、Harris Hawks算法、equilibrium optimizer、aquilla optimizer和Honey Badger算法等5种最先进的优化算法进行了比较,以评估其性能优势。使用该方法获得的结果在性能可比性方面优于或类似于以前的算法。弗里德曼平均秩检验用于检验所提出方法的统计显著性。使用所提出的方法获得的最低弗里德曼平均秩值表明,所提出的方法有可能成为其他知名策略的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modified U-Shaped Transfer Function: Applied to Classify Parkinson'S Disease

Transfer functions have a very important role in metaheuristic optimization-based feature selection algorithms as these functions map the continuous search space into binary space. The U-shaped transfer function (UTF) is one of the transfer functions used to solve the problem of feature selection. However, the UTF requires the selection of parametric values, which can vary for different types of data. To address this issue, an approach to select the parameters of the UTF has been proposed based on a time-varying adaption method, resulting in the modified U-shaped transfer function (MUTF). Furthermore, a methodology has been proposed to enhance feature selection and classification for Parkinson's disease by utilizing z-score normalization in conjunction with a modified U-shaped transfer function and the binary self-adaptive bald eagle search (MUTF-SABES) optimization algorithm. The z-score normalization has been used to mitigate issues caused by outliers. Also, the performance of the k nearest neighbor classifier is improved by selecting an optimal parameter value using the proposed MUTF-SABES algorithm. The effectiveness of the proposed methodology is validated on seven different Parkinson's disease datasets and compared with five state-of-the-art optimization algorithms: Salp Swarm algorithm, Harris Hawks optimization, equilibrium optimizer, aquilla optimizer, and Honey Badger algorithm, to evaluate its performance superiority. The results achieved using the proposed approach have been superior or analogous to the erstwhile algorithms for performance comparability. Friedman's mean rank test is used to check the statistical significance of the propounded approach. The lowest Friedman's mean rank value obtained using the proposed approach indicates that the proposed approach has the potential to become an alternative to other well-known strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Intelligence
Computational Intelligence 工程技术-计算机:人工智能
CiteScore
6.90
自引率
3.60%
发文量
65
审稿时长
>12 weeks
期刊介绍: This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信