用于深空探测的 X 射线脉冲星/卫星间测距/地标综合导航方法

IF 1.4 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Shuting Wang, Yuqi Guo, Xiao Chen, Jun Xu, Xin Ma
{"title":"用于深空探测的 X 射线脉冲星/卫星间测距/地标综合导航方法","authors":"Shuting Wang,&nbsp;Yuqi Guo,&nbsp;Xiao Chen,&nbsp;Jun Xu,&nbsp;Xin Ma","doi":"10.1049/rsn2.70018","DOIUrl":null,"url":null,"abstract":"<p>To improve the autonomous navigation accuracy of the Mars probe, a navigation method for orbit around mars using an auxiliary satellite and absolute and relative position information of x-ray pulsars/inter-satellite ranging/landmark integrated navigation is proposed in this paper. In this method, the Mars probe and the auxiliary satellite simultaneously observe the same x-ray pulsar, and the difference in pulse arrival time (TDOA) is calculated by comparing their observations. The states of both the spacecraft and the auxiliary satellite are estimated by integrating the prior known position of the auxiliary satellite. To address systematic errors that remain constant over short periods—such as those introduced by the spacecraft's measurement instruments and satellite systems—these constant errors are incorporated into the state model to improve estimation and prediction accuracy. Moreover, to further enhance navigation precision, the approach integrates x-ray pulsar navigation, inter-satellite ranging, and landmark-based navigation thereby improving system robustness. This approach demonstrates a significant reduction in errors, such as pulsar ephemeris inaccuracies and satellite clock drift, compared to traditional pulsar-based navigation methods. Simulation results confirm the effectiveness of the proposed method in enhancing navigation performance.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70018","citationCount":"0","resultStr":"{\"title\":\"A X-Ray Pulsar/Inter-Satellite Ranging/Landmark Integrated Navigation Method for Deep Space Exploration\",\"authors\":\"Shuting Wang,&nbsp;Yuqi Guo,&nbsp;Xiao Chen,&nbsp;Jun Xu,&nbsp;Xin Ma\",\"doi\":\"10.1049/rsn2.70018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To improve the autonomous navigation accuracy of the Mars probe, a navigation method for orbit around mars using an auxiliary satellite and absolute and relative position information of x-ray pulsars/inter-satellite ranging/landmark integrated navigation is proposed in this paper. In this method, the Mars probe and the auxiliary satellite simultaneously observe the same x-ray pulsar, and the difference in pulse arrival time (TDOA) is calculated by comparing their observations. The states of both the spacecraft and the auxiliary satellite are estimated by integrating the prior known position of the auxiliary satellite. To address systematic errors that remain constant over short periods—such as those introduced by the spacecraft's measurement instruments and satellite systems—these constant errors are incorporated into the state model to improve estimation and prediction accuracy. Moreover, to further enhance navigation precision, the approach integrates x-ray pulsar navigation, inter-satellite ranging, and landmark-based navigation thereby improving system robustness. This approach demonstrates a significant reduction in errors, such as pulsar ephemeris inaccuracies and satellite clock drift, compared to traditional pulsar-based navigation methods. Simulation results confirm the effectiveness of the proposed method in enhancing navigation performance.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70018\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.70018","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

A X-Ray Pulsar/Inter-Satellite Ranging/Landmark Integrated Navigation Method for Deep Space Exploration

A X-Ray Pulsar/Inter-Satellite Ranging/Landmark Integrated Navigation Method for Deep Space Exploration

To improve the autonomous navigation accuracy of the Mars probe, a navigation method for orbit around mars using an auxiliary satellite and absolute and relative position information of x-ray pulsars/inter-satellite ranging/landmark integrated navigation is proposed in this paper. In this method, the Mars probe and the auxiliary satellite simultaneously observe the same x-ray pulsar, and the difference in pulse arrival time (TDOA) is calculated by comparing their observations. The states of both the spacecraft and the auxiliary satellite are estimated by integrating the prior known position of the auxiliary satellite. To address systematic errors that remain constant over short periods—such as those introduced by the spacecraft's measurement instruments and satellite systems—these constant errors are incorporated into the state model to improve estimation and prediction accuracy. Moreover, to further enhance navigation precision, the approach integrates x-ray pulsar navigation, inter-satellite ranging, and landmark-based navigation thereby improving system robustness. This approach demonstrates a significant reduction in errors, such as pulsar ephemeris inaccuracies and satellite clock drift, compared to traditional pulsar-based navigation methods. Simulation results confirm the effectiveness of the proposed method in enhancing navigation performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信