Tiejun Ge, Dalong Zhao, Xiaofeng Liu, Yang Yu, Xiaofeng He, Qi Yue, Wanrong Liu, Qunhe Sun
{"title":"带有苯基侧基的可生物降解共聚聚酯的合成与性能","authors":"Tiejun Ge, Dalong Zhao, Xiaofeng Liu, Yang Yu, Xiaofeng He, Qi Yue, Wanrong Liu, Qunhe Sun","doi":"10.1002/macp.202400442","DOIUrl":null,"url":null,"abstract":"<p>Poly(butylene adipate terephthalate) (PBAT) is a biodegradable copolyester that has garnered significant attention in recent years. However, its application is limited by low tensile strength and elastic modulus. Current research focuses on copolymerization modifications aimed at enhancing PBAT's performance. In this study, a novel copolyester with phenyl side groups, poly(butylene-co-3-phenoxy-1,2-propylene adipate-co-terephthalate) (PBPAT), is synthesized via melt polycondensation. The impact of varying amounts of the fourth monomer, 3-phenoxy-1,2-propylene glycol (PPDO), on the copolyester's properties is investigated. FTIR and NMR spectroscopy confirm the structure and composition of PBPAT. The molecular weight, thermal properties, mechanical properties, processing characteristics, and hydrophilicity of the copolymers are comprehensively evaluated. The results indicate that PPDO does not affect the crystal structure of PBAT. However, the performance of PBPAT is significantly influenced by the PPDO content, which the optimal mechanical properties are achieved with 12.5% PPDO, demonstrating a tensile strength of 26.1 MPa and an elastic modulus of 220.6 MPa. Furthermore, PBPAT copolyesters exhibit high crystallinity, heat resistance, good hydrophilicity, and superior processability. The novel PBPAT copolyester offers enhanced performance characteristics and holds potential for replace commercial PBAT, thereby expanding the application scope of biodegradable materials.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 6","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Properties of Biodegradable Copolyester with Phenyl Side Groups\",\"authors\":\"Tiejun Ge, Dalong Zhao, Xiaofeng Liu, Yang Yu, Xiaofeng He, Qi Yue, Wanrong Liu, Qunhe Sun\",\"doi\":\"10.1002/macp.202400442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Poly(butylene adipate terephthalate) (PBAT) is a biodegradable copolyester that has garnered significant attention in recent years. However, its application is limited by low tensile strength and elastic modulus. Current research focuses on copolymerization modifications aimed at enhancing PBAT's performance. In this study, a novel copolyester with phenyl side groups, poly(butylene-co-3-phenoxy-1,2-propylene adipate-co-terephthalate) (PBPAT), is synthesized via melt polycondensation. The impact of varying amounts of the fourth monomer, 3-phenoxy-1,2-propylene glycol (PPDO), on the copolyester's properties is investigated. FTIR and NMR spectroscopy confirm the structure and composition of PBPAT. The molecular weight, thermal properties, mechanical properties, processing characteristics, and hydrophilicity of the copolymers are comprehensively evaluated. The results indicate that PPDO does not affect the crystal structure of PBAT. However, the performance of PBPAT is significantly influenced by the PPDO content, which the optimal mechanical properties are achieved with 12.5% PPDO, demonstrating a tensile strength of 26.1 MPa and an elastic modulus of 220.6 MPa. Furthermore, PBPAT copolyesters exhibit high crystallinity, heat resistance, good hydrophilicity, and superior processability. The novel PBPAT copolyester offers enhanced performance characteristics and holds potential for replace commercial PBAT, thereby expanding the application scope of biodegradable materials.</p>\",\"PeriodicalId\":18054,\"journal\":{\"name\":\"Macromolecular Chemistry and Physics\",\"volume\":\"226 6\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Chemistry and Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400442\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400442","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Synthesis and Properties of Biodegradable Copolyester with Phenyl Side Groups
Poly(butylene adipate terephthalate) (PBAT) is a biodegradable copolyester that has garnered significant attention in recent years. However, its application is limited by low tensile strength and elastic modulus. Current research focuses on copolymerization modifications aimed at enhancing PBAT's performance. In this study, a novel copolyester with phenyl side groups, poly(butylene-co-3-phenoxy-1,2-propylene adipate-co-terephthalate) (PBPAT), is synthesized via melt polycondensation. The impact of varying amounts of the fourth monomer, 3-phenoxy-1,2-propylene glycol (PPDO), on the copolyester's properties is investigated. FTIR and NMR spectroscopy confirm the structure and composition of PBPAT. The molecular weight, thermal properties, mechanical properties, processing characteristics, and hydrophilicity of the copolymers are comprehensively evaluated. The results indicate that PPDO does not affect the crystal structure of PBAT. However, the performance of PBPAT is significantly influenced by the PPDO content, which the optimal mechanical properties are achieved with 12.5% PPDO, demonstrating a tensile strength of 26.1 MPa and an elastic modulus of 220.6 MPa. Furthermore, PBPAT copolyesters exhibit high crystallinity, heat resistance, good hydrophilicity, and superior processability. The novel PBPAT copolyester offers enhanced performance characteristics and holds potential for replace commercial PBAT, thereby expanding the application scope of biodegradable materials.
期刊介绍:
Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.