{"title":"Future Soil Erosion Risk in China: Differences in Erosion Driven by General and Extreme Precipitation Under Climate Change","authors":"Changyan Yin, Chenyun Bai, Yuanjun Zhu, Ming'an Shao, Xiaoyang Han, Jiangbo Qiao","doi":"10.1029/2024EF005390","DOIUrl":null,"url":null,"abstract":"<p>Soil erosion status is a comprehensive indicator reflecting the quality and stability of ecosystems. Soil erosion changes in China are becoming more unclear due to climate change and intensified human activity. Within the framework of climate change, this study treats the rainfall erosion factor as a dynamic factor and examines three types of contrasting precipitation—general, heavy, and extreme—through integrates the Revised Universal Soil Loss Equation and Geographic Information Systems to reveal differences in water erosion driven by varying intensities of precipitation. The results reveal that over 63% of China's land area has experienced soil erosion during the historical period (1980–2022), with slight erosion being the most common. Severe water erosion is predominantly found in the Southwest Basin, the Yangtze River Basin, and the Yellow River basin. The multi-year average soil erosion rate in China is estimated at 2.46 t·ha<sup>−1</sup> yr<sup>−1</sup>, with R95P and R99P contributing 26.50% and 7.71%, respectively. Future projections (2023–2100) indicate that soil erosion driven by PRCPTOT, R95P, and R99P could increase by 22%–91% under SSP5-RCP8.5 and SSP2-RCP4.5 scenarios. Overall, climate change has a limited effect on the spatial pattern of soil erosion in China, mainly influencing the intensity and extent of water erosion and adversely impacting most regions. Extreme precipitation is more sensitive to climate change, making future erosion risks associated with it a critical concern. These findings can guide decision-makers and resource managers in regional planning to enhance resilience to climate change and secure water and food resources.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"13 3","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF005390","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF005390","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Future Soil Erosion Risk in China: Differences in Erosion Driven by General and Extreme Precipitation Under Climate Change
Soil erosion status is a comprehensive indicator reflecting the quality and stability of ecosystems. Soil erosion changes in China are becoming more unclear due to climate change and intensified human activity. Within the framework of climate change, this study treats the rainfall erosion factor as a dynamic factor and examines three types of contrasting precipitation—general, heavy, and extreme—through integrates the Revised Universal Soil Loss Equation and Geographic Information Systems to reveal differences in water erosion driven by varying intensities of precipitation. The results reveal that over 63% of China's land area has experienced soil erosion during the historical period (1980–2022), with slight erosion being the most common. Severe water erosion is predominantly found in the Southwest Basin, the Yangtze River Basin, and the Yellow River basin. The multi-year average soil erosion rate in China is estimated at 2.46 t·ha−1 yr−1, with R95P and R99P contributing 26.50% and 7.71%, respectively. Future projections (2023–2100) indicate that soil erosion driven by PRCPTOT, R95P, and R99P could increase by 22%–91% under SSP5-RCP8.5 and SSP2-RCP4.5 scenarios. Overall, climate change has a limited effect on the spatial pattern of soil erosion in China, mainly influencing the intensity and extent of water erosion and adversely impacting most regions. Extreme precipitation is more sensitive to climate change, making future erosion risks associated with it a critical concern. These findings can guide decision-makers and resource managers in regional planning to enhance resilience to climate change and secure water and food resources.
期刊介绍:
Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.