Luciano Ludovico Maria De Benedictis, Stefano Chelli, Roberto Canullo, Giandiego Campetella
{"title":"测量它们:基于个体的山地草原功能空间格局","authors":"Luciano Ludovico Maria De Benedictis, Stefano Chelli, Roberto Canullo, Giandiego Campetella","doi":"10.1111/jvs.70029","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Questions</h3>\n \n <p>Spatial patterns of plant traits have rarely been studied at distances below 10 cm. Is it possible to detect nonrandom functional patterns at a very fine scale in mountain secondary grasslands? An analysis in terms of trait similarity, magnitude and density correlation can highlight the importance of different biotic and abiotic processes at these scales. We expect species identity to be of secondary importance if all individuals are identified by their measured traits, resulting in consistent patterns whether it is considered or not, especially if ITV (intraspecific trait variability) and functional overlap are high.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Natural reserve “Montagna di Torricchio,” a strict reserve in the Marche region, central Apennines, Italy.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Plant height, leaf area, and specific leaf area have been measured for each individual (1094 ramets) in 10 quadrats, divided into two grasslands differing in canopy cover. Functional redundancy and ITV were evaluated with overlap measures and variance partitioning. Marked point pattern statistics have been used to test for non-randomness of trait patterns either by considering all individuals at once or by excluding conspecific pairs.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>At distances below 8 cm, we found evidence of trait convergence, pairs smaller than expected and negative density correlation. Above 8 cm, we found trait divergence and larger than expected pairs. We suggest biotic and abiotic causes for this, linked to physical packing or similarity in soil depth, respectively. The results differed between traits and between grasslands. The results were consistent whether conspecific pairs were excluded or not. There is a high functional overlap among species, and ITV has a large contribution to variability.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>We found nonrandom functional patterns in grasslands below 10 cm, an almost unexplored scale range in any vegetation. The approach used showed that taxonomic identity is less important than the functional setting of individuals at this scale.</p>\n </section>\n </div>","PeriodicalId":49965,"journal":{"name":"Journal of Vegetation Science","volume":"36 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.70029","citationCount":"0","resultStr":"{\"title\":\"Measuring Them all: Individual-Based Functional Spatial Patterns in Mountain Grasslands\",\"authors\":\"Luciano Ludovico Maria De Benedictis, Stefano Chelli, Roberto Canullo, Giandiego Campetella\",\"doi\":\"10.1111/jvs.70029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Questions</h3>\\n \\n <p>Spatial patterns of plant traits have rarely been studied at distances below 10 cm. Is it possible to detect nonrandom functional patterns at a very fine scale in mountain secondary grasslands? An analysis in terms of trait similarity, magnitude and density correlation can highlight the importance of different biotic and abiotic processes at these scales. We expect species identity to be of secondary importance if all individuals are identified by their measured traits, resulting in consistent patterns whether it is considered or not, especially if ITV (intraspecific trait variability) and functional overlap are high.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Natural reserve “Montagna di Torricchio,” a strict reserve in the Marche region, central Apennines, Italy.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Plant height, leaf area, and specific leaf area have been measured for each individual (1094 ramets) in 10 quadrats, divided into two grasslands differing in canopy cover. Functional redundancy and ITV were evaluated with overlap measures and variance partitioning. Marked point pattern statistics have been used to test for non-randomness of trait patterns either by considering all individuals at once or by excluding conspecific pairs.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>At distances below 8 cm, we found evidence of trait convergence, pairs smaller than expected and negative density correlation. Above 8 cm, we found trait divergence and larger than expected pairs. We suggest biotic and abiotic causes for this, linked to physical packing or similarity in soil depth, respectively. The results differed between traits and between grasslands. The results were consistent whether conspecific pairs were excluded or not. There is a high functional overlap among species, and ITV has a large contribution to variability.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>We found nonrandom functional patterns in grasslands below 10 cm, an almost unexplored scale range in any vegetation. The approach used showed that taxonomic identity is less important than the functional setting of individuals at this scale.</p>\\n </section>\\n </div>\",\"PeriodicalId\":49965,\"journal\":{\"name\":\"Journal of Vegetation Science\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jvs.70029\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vegetation Science\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jvs.70029\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vegetation Science","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jvs.70029","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Measuring Them all: Individual-Based Functional Spatial Patterns in Mountain Grasslands
Questions
Spatial patterns of plant traits have rarely been studied at distances below 10 cm. Is it possible to detect nonrandom functional patterns at a very fine scale in mountain secondary grasslands? An analysis in terms of trait similarity, magnitude and density correlation can highlight the importance of different biotic and abiotic processes at these scales. We expect species identity to be of secondary importance if all individuals are identified by their measured traits, resulting in consistent patterns whether it is considered or not, especially if ITV (intraspecific trait variability) and functional overlap are high.
Location
Natural reserve “Montagna di Torricchio,” a strict reserve in the Marche region, central Apennines, Italy.
Methods
Plant height, leaf area, and specific leaf area have been measured for each individual (1094 ramets) in 10 quadrats, divided into two grasslands differing in canopy cover. Functional redundancy and ITV were evaluated with overlap measures and variance partitioning. Marked point pattern statistics have been used to test for non-randomness of trait patterns either by considering all individuals at once or by excluding conspecific pairs.
Results
At distances below 8 cm, we found evidence of trait convergence, pairs smaller than expected and negative density correlation. Above 8 cm, we found trait divergence and larger than expected pairs. We suggest biotic and abiotic causes for this, linked to physical packing or similarity in soil depth, respectively. The results differed between traits and between grasslands. The results were consistent whether conspecific pairs were excluded or not. There is a high functional overlap among species, and ITV has a large contribution to variability.
Conclusions
We found nonrandom functional patterns in grasslands below 10 cm, an almost unexplored scale range in any vegetation. The approach used showed that taxonomic identity is less important than the functional setting of individuals at this scale.
期刊介绍:
The Journal of Vegetation Science publishes papers on all aspects of plant community ecology, with particular emphasis on papers that develop new concepts or methods, test theory, identify general patterns, or that are otherwise likely to interest a broad international readership. Papers may focus on any aspect of vegetation science, e.g. community structure (including community assembly and plant functional types), biodiversity (including species richness and composition), spatial patterns (including plant geography and landscape ecology), temporal changes (including demography, community dynamics and palaeoecology) and processes (including ecophysiology), provided the focus is on increasing our understanding of plant communities. The Journal publishes papers on the ecology of a single species only if it plays a key role in structuring plant communities. Papers that apply ecological concepts, theories and methods to the vegetation management, conservation and restoration, and papers on vegetation survey should be directed to our associate journal, Applied Vegetation Science journal.