引入基于免疫球蛋白的生物相容性药物载体以缓释抗癌剂钯(II)配合物的新趋势:药物释放和细胞毒性评价

IF 3.7 2区 化学 Q2 CHEMISTRY, APPLIED
Maryam Saeidifar, Hamid Reza Mirzaei, Ghazaleh Rahimi, Robert Macgregor, Seyed Mojtaba Daghighi
{"title":"引入基于免疫球蛋白的生物相容性药物载体以缓释抗癌剂钯(II)配合物的新趋势:药物释放和细胞毒性评价","authors":"Maryam Saeidifar,&nbsp;Hamid Reza Mirzaei,&nbsp;Ghazaleh Rahimi,&nbsp;Robert Macgregor,&nbsp;Seyed Mojtaba Daghighi","doi":"10.1002/aoc.70020","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Severe side effects and low chemotherapy efficacy remain challenges in cancer treatment. Therefore, this research is aimed at investigating a colloidal drug nanocarrier based on immunoglobulin nanoparticles (IgGNPs) for sustained release of an anticancer agent. A novel palladium (II) complex (PBD) loaded to IgGNPs and its formation (PBD@IgGNP) was characterized by FTIR, DLS, and AFM techniques. The size of designed system was 797 ± 121 nm, with a particle size distribution and surface charge greater than those of IgGNP indicating the conjugation of PBD and IgGNP. The release behavior indicated that 33.66% of PBD and 12.76% of encapsulated PBD in IgGNP were released at 579 h, while carboplatin was completely released at 216 h. The release mechanism followed Korsmeyer–Peppas model and non-Fickian law. Other kinetic parameters of the release are also presented. Furthermore, MTT assay showed that IC<sub>50</sub> values of PBD and PBD@IgGNP on breast cancer cells, 4T1, were 0.75 mM while 78% of the cells were viable at the same concentration of carboplatin. DAPI, AO/EB, and PCR staining indicated that the apoptotic induction of PBD@IgGNP was greater than PBD. Moreover, in vivo results confirmed the apoptotic induction and inhibition of tumor growth in the presence of PBD@IgGNP. These valuable achievements proposed a potential nanocarrier to increase the apoptotic induction and effectiveness of anticancer drugs and decrease their side effects.</p>\n </div>","PeriodicalId":8344,"journal":{"name":"Applied Organometallic Chemistry","volume":"39 4","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Trend to Introduce a Biocompatible Drug Carrier Based on Immunoglobulin for Prolonged Release of Palladium (II) Complex as an Anticancer Agent: Drug Release and Cytotoxicity Assessment\",\"authors\":\"Maryam Saeidifar,&nbsp;Hamid Reza Mirzaei,&nbsp;Ghazaleh Rahimi,&nbsp;Robert Macgregor,&nbsp;Seyed Mojtaba Daghighi\",\"doi\":\"10.1002/aoc.70020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Severe side effects and low chemotherapy efficacy remain challenges in cancer treatment. Therefore, this research is aimed at investigating a colloidal drug nanocarrier based on immunoglobulin nanoparticles (IgGNPs) for sustained release of an anticancer agent. A novel palladium (II) complex (PBD) loaded to IgGNPs and its formation (PBD@IgGNP) was characterized by FTIR, DLS, and AFM techniques. The size of designed system was 797 ± 121 nm, with a particle size distribution and surface charge greater than those of IgGNP indicating the conjugation of PBD and IgGNP. The release behavior indicated that 33.66% of PBD and 12.76% of encapsulated PBD in IgGNP were released at 579 h, while carboplatin was completely released at 216 h. The release mechanism followed Korsmeyer–Peppas model and non-Fickian law. Other kinetic parameters of the release are also presented. Furthermore, MTT assay showed that IC<sub>50</sub> values of PBD and PBD@IgGNP on breast cancer cells, 4T1, were 0.75 mM while 78% of the cells were viable at the same concentration of carboplatin. DAPI, AO/EB, and PCR staining indicated that the apoptotic induction of PBD@IgGNP was greater than PBD. Moreover, in vivo results confirmed the apoptotic induction and inhibition of tumor growth in the presence of PBD@IgGNP. These valuable achievements proposed a potential nanocarrier to increase the apoptotic induction and effectiveness of anticancer drugs and decrease their side effects.</p>\\n </div>\",\"PeriodicalId\":8344,\"journal\":{\"name\":\"Applied Organometallic Chemistry\",\"volume\":\"39 4\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Organometallic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aoc.70020\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aoc.70020","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

毒副作用大、化疗疗效低是癌症治疗的难题。因此,本研究旨在研究一种基于免疫球蛋白纳米颗粒(IgGNPs)的胶体药物纳米载体,用于抗癌药物的缓释。通过FTIR, DLS和AFM技术表征了负载于IgGNPs上的新型钯(II)配合物(PBD)及其形成(PBD@IgGNP)。设计的体系尺寸为797±121 nm,粒径分布和表面电荷均大于IgGNP,表明PBD与IgGNP偶联。释放行为表明,IgGNP中33.66%的PBD和12.76%的PBD在579 h释放,而卡铂在216 h完全释放。释放机制遵循Korsmeyer-Peppas模型和非fickian法则。并给出了释放的其他动力学参数。此外,MTT实验显示PBD和PBD@IgGNP对乳腺癌细胞4T1的IC50值为0.75 mM,在相同的卡铂浓度下,78%的细胞存活。DAPI、AO/EB、PCR染色显示PBD@IgGNP对细胞凋亡的诱导作用大于PBD。此外,体内实验结果证实了PBD@IgGNP存在诱导凋亡和抑制肿瘤生长的作用。这些有价值的成果提出了一种潜在的纳米载体,可以增强抗癌药物的凋亡诱导和有效性,降低其副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Trend to Introduce a Biocompatible Drug Carrier Based on Immunoglobulin for Prolonged Release of Palladium (II) Complex as an Anticancer Agent: Drug Release and Cytotoxicity Assessment

Severe side effects and low chemotherapy efficacy remain challenges in cancer treatment. Therefore, this research is aimed at investigating a colloidal drug nanocarrier based on immunoglobulin nanoparticles (IgGNPs) for sustained release of an anticancer agent. A novel palladium (II) complex (PBD) loaded to IgGNPs and its formation (PBD@IgGNP) was characterized by FTIR, DLS, and AFM techniques. The size of designed system was 797 ± 121 nm, with a particle size distribution and surface charge greater than those of IgGNP indicating the conjugation of PBD and IgGNP. The release behavior indicated that 33.66% of PBD and 12.76% of encapsulated PBD in IgGNP were released at 579 h, while carboplatin was completely released at 216 h. The release mechanism followed Korsmeyer–Peppas model and non-Fickian law. Other kinetic parameters of the release are also presented. Furthermore, MTT assay showed that IC50 values of PBD and PBD@IgGNP on breast cancer cells, 4T1, were 0.75 mM while 78% of the cells were viable at the same concentration of carboplatin. DAPI, AO/EB, and PCR staining indicated that the apoptotic induction of PBD@IgGNP was greater than PBD. Moreover, in vivo results confirmed the apoptotic induction and inhibition of tumor growth in the presence of PBD@IgGNP. These valuable achievements proposed a potential nanocarrier to increase the apoptotic induction and effectiveness of anticancer drugs and decrease their side effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Organometallic Chemistry
Applied Organometallic Chemistry 化学-无机化学与核化学
CiteScore
7.80
自引率
10.30%
发文量
408
审稿时长
2.2 months
期刊介绍: All new compounds should be satisfactorily identified and proof of their structure given according to generally accepted standards. Structural reports, such as papers exclusively dealing with synthesis and characterization, analytical techniques, or X-ray diffraction studies of metal-organic or organometallic compounds will not be considered. The editors reserve the right to refuse without peer review any manuscript that does not comply with the aims and scope of the journal. Applied Organometallic Chemistry publishes Full Papers, Reviews, Mini Reviews and Communications of scientific research in all areas of organometallic and metal-organic chemistry involving main group metals, transition metals, lanthanides and actinides. All contributions should contain an explicit application of novel compounds, for instance in materials science, nano science, catalysis, chemical vapour deposition, metal-mediated organic synthesis, polymers, bio-organometallics, metallo-therapy, metallo-diagnostics and medicine. Reviews of books covering aspects of the fields of focus are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信