{"title":"A$ A$型标志流形的环面等变量子K$ K$理论环,第1部分:定义理想","authors":"Toshiaki Maeno, Satoshi Naito, Daisuke Sagaki","doi":"10.1112/jlms.70095","DOIUrl":null,"url":null,"abstract":"<p>We give a presentation of the torus-equivariant (small) quantum <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-theory ring of flag manifolds of type <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>, as the quotient of a polynomial ring by an explicit ideal. This result is the torus-equivariant version of our previous one, which gives a presentation of the nonequivariant quantum <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-theory ring of flag manifolds of type <span></span><math>\n <semantics>\n <mi>A</mi>\n <annotation>$A$</annotation>\n </semantics></math>. However, the method of proof for the torus-equivariant one is entirely different from that for the nonequivariant one; our proof is based on the result in the <span></span><math>\n <semantics>\n <mrow>\n <mi>Q</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$Q = 0$</annotation>\n </semantics></math> limit, and uses Nakayama-type arguments to upgrade it to the quantum situation. Also, in contrast to the nonequivariant case in which we used the Chevalley formula, we make use of the inverse Chevalley formula for the torus-equivariant <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math>-group of semi-infinite flag manifolds to obtain relations that yield our presentation.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A presentation of the torus-equivariant quantum \\n \\n K\\n $K$\\n -theory ring of flag manifolds of type \\n \\n A\\n $A$\\n , Part I: The defining ideal\",\"authors\":\"Toshiaki Maeno, Satoshi Naito, Daisuke Sagaki\",\"doi\":\"10.1112/jlms.70095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give a presentation of the torus-equivariant (small) quantum <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>-theory ring of flag manifolds of type <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math>, as the quotient of a polynomial ring by an explicit ideal. This result is the torus-equivariant version of our previous one, which gives a presentation of the nonequivariant quantum <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>-theory ring of flag manifolds of type <span></span><math>\\n <semantics>\\n <mi>A</mi>\\n <annotation>$A$</annotation>\\n </semantics></math>. However, the method of proof for the torus-equivariant one is entirely different from that for the nonequivariant one; our proof is based on the result in the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Q</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$Q = 0$</annotation>\\n </semantics></math> limit, and uses Nakayama-type arguments to upgrade it to the quantum situation. Also, in contrast to the nonequivariant case in which we used the Chevalley formula, we make use of the inverse Chevalley formula for the torus-equivariant <span></span><math>\\n <semantics>\\n <mi>K</mi>\\n <annotation>$K$</annotation>\\n </semantics></math>-group of semi-infinite flag manifolds to obtain relations that yield our presentation.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70095\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70095","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
给出了a $ a $型标志流形的环面等变(小)量子K$ K$理论环作为多项式环的商的一个显式理想。这个结果是我们前一个结果的环面等变版本,它给出了a $ a $型标志流形的非等变量子K$ K$理论环。然而,环面等变的证明方法与非等变的证明方法是完全不同的;我们的证明基于Q = 0$ Q = 0$极限的结果,并使用nakayama型参数将其升级到量子情况。此外,与我们使用Chevalley公式的非等变情况相反,我们使用环面等变的半无限标志流形K$ K$群的逆Chevalley公式来获得产生我们的表述的关系。
A presentation of the torus-equivariant quantum
K
$K$
-theory ring of flag manifolds of type
A
$A$
, Part I: The defining ideal
We give a presentation of the torus-equivariant (small) quantum -theory ring of flag manifolds of type , as the quotient of a polynomial ring by an explicit ideal. This result is the torus-equivariant version of our previous one, which gives a presentation of the nonequivariant quantum -theory ring of flag manifolds of type . However, the method of proof for the torus-equivariant one is entirely different from that for the nonequivariant one; our proof is based on the result in the limit, and uses Nakayama-type arguments to upgrade it to the quantum situation. Also, in contrast to the nonequivariant case in which we used the Chevalley formula, we make use of the inverse Chevalley formula for the torus-equivariant -group of semi-infinite flag manifolds to obtain relations that yield our presentation.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.