Sujung Park, Febrian Tri Adhi Wibowo, Dohui Kim, Jina Roe, Jin Hee Lee, Jung Hwa Seo, Jin Young Kim, Sung-Yeon Jang, Shinuk Cho
{"title":"BPhen:Cs2CO3与高性能稳定反向非富勒烯有机太阳能电池的界面工程","authors":"Sujung Park, Febrian Tri Adhi Wibowo, Dohui Kim, Jina Roe, Jin Hee Lee, Jung Hwa Seo, Jin Young Kim, Sung-Yeon Jang, Shinuk Cho","doi":"10.1002/solr.202400902","DOIUrl":null,"url":null,"abstract":"<p>The widely used ZnO electron transport layer in inverted nonfullerene organic solar cells (nf-OSCs) offers advantages such as excellent electron mobility and optical transparency. However, challenges arise from surface defects in solution-processed ZnO, where oxygen-containing defects can penetrate the photoactive layer, leading to photocatalytic reactions with nonfullerene acceptors under UV light, thereby compromising device stability. Another challenge is that most recent high-efficiency nf-OSCs employ conventional structures, while inverted structures exhibit comparatively lower performance. To develop stable and high-performance inverted nf-OSCs, interface modification is essential to mitigate photocatalytic issues and enhance the relatively lower power conversion efficiency (PCE). To overcome these limitations, we introduce bathophenanthroline (BPhen) doped with Cs<sub>2</sub>CO<sub>3</sub>. The BPhen:Cs<sub>2</sub>CO<sub>3</sub> layer creates suitable energy levels, enhancing electron transport and reducing charge recombination. This approach significantly improves current density and fill factor, resulting in a notable enhancement in the PCE of pristine ZnO devices from 15.54% to 17.09% in PM6:Y6 inverted nf-OSCs. Furthermore, ZnO/BPhen:Cs<sub>2</sub>CO<sub>3</sub> devices exhibit excellent stability, retaining ~83% of their initial efficiency even after 1000 h without encapsulation, showcasing superior stability compared to pristine ZnO-based devices.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 6","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface Engineering with BPhen:Cs2CO3 for High-Performance and Stable Inverted Nonfullerene Organic Solar Cells\",\"authors\":\"Sujung Park, Febrian Tri Adhi Wibowo, Dohui Kim, Jina Roe, Jin Hee Lee, Jung Hwa Seo, Jin Young Kim, Sung-Yeon Jang, Shinuk Cho\",\"doi\":\"10.1002/solr.202400902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The widely used ZnO electron transport layer in inverted nonfullerene organic solar cells (nf-OSCs) offers advantages such as excellent electron mobility and optical transparency. However, challenges arise from surface defects in solution-processed ZnO, where oxygen-containing defects can penetrate the photoactive layer, leading to photocatalytic reactions with nonfullerene acceptors under UV light, thereby compromising device stability. Another challenge is that most recent high-efficiency nf-OSCs employ conventional structures, while inverted structures exhibit comparatively lower performance. To develop stable and high-performance inverted nf-OSCs, interface modification is essential to mitigate photocatalytic issues and enhance the relatively lower power conversion efficiency (PCE). To overcome these limitations, we introduce bathophenanthroline (BPhen) doped with Cs<sub>2</sub>CO<sub>3</sub>. The BPhen:Cs<sub>2</sub>CO<sub>3</sub> layer creates suitable energy levels, enhancing electron transport and reducing charge recombination. This approach significantly improves current density and fill factor, resulting in a notable enhancement in the PCE of pristine ZnO devices from 15.54% to 17.09% in PM6:Y6 inverted nf-OSCs. Furthermore, ZnO/BPhen:Cs<sub>2</sub>CO<sub>3</sub> devices exhibit excellent stability, retaining ~83% of their initial efficiency even after 1000 h without encapsulation, showcasing superior stability compared to pristine ZnO-based devices.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 6\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400902\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400902","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Interface Engineering with BPhen:Cs2CO3 for High-Performance and Stable Inverted Nonfullerene Organic Solar Cells
The widely used ZnO electron transport layer in inverted nonfullerene organic solar cells (nf-OSCs) offers advantages such as excellent electron mobility and optical transparency. However, challenges arise from surface defects in solution-processed ZnO, where oxygen-containing defects can penetrate the photoactive layer, leading to photocatalytic reactions with nonfullerene acceptors under UV light, thereby compromising device stability. Another challenge is that most recent high-efficiency nf-OSCs employ conventional structures, while inverted structures exhibit comparatively lower performance. To develop stable and high-performance inverted nf-OSCs, interface modification is essential to mitigate photocatalytic issues and enhance the relatively lower power conversion efficiency (PCE). To overcome these limitations, we introduce bathophenanthroline (BPhen) doped with Cs2CO3. The BPhen:Cs2CO3 layer creates suitable energy levels, enhancing electron transport and reducing charge recombination. This approach significantly improves current density and fill factor, resulting in a notable enhancement in the PCE of pristine ZnO devices from 15.54% to 17.09% in PM6:Y6 inverted nf-OSCs. Furthermore, ZnO/BPhen:Cs2CO3 devices exhibit excellent stability, retaining ~83% of their initial efficiency even after 1000 h without encapsulation, showcasing superior stability compared to pristine ZnO-based devices.
Solar RRLPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍:
Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.