Eu3+配合物介导的Ag-NPs静电自组装用于物理不可克隆的功能标签

IF 13.9 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yao Kou, Yanan Guo, Lijuan Liang, Xue Li, Yifan Wang, Pingru Su, Chun-Hua Yan, Yu Tang
{"title":"Eu3+配合物介导的Ag-NPs静电自组装用于物理不可克隆的功能标签","authors":"Yao Kou,&nbsp;Yanan Guo,&nbsp;Lijuan Liang,&nbsp;Xue Li,&nbsp;Yifan Wang,&nbsp;Pingru Su,&nbsp;Chun-Hua Yan,&nbsp;Yu Tang","doi":"10.1002/agt2.701","DOIUrl":null,"url":null,"abstract":"<p>Physically unclonable functions (PUFs) are essential for anticounterfeiting. Creating high-stability, multimode, and secure labels remains challenging. Herein, we present a novel self-assembly method for modulating the optical signals of rare-earth (RE) complexes via interactions with Ag nanoparticles (Ag-NPs). Initially, we engineered a positively charged Eu<sup>3+</sup> complex ([EuL<sub>3</sub>]<sup>3+</sup>), which promotes the self-assembly of negatively charged Ag-NPs to form Eu/Ag-NPs composites. The assembly of Ag-NPs induces a surface plasmon effect that boosts the luminescent quantum yield and Raman signal intensities, and modifies the luminescence lifetime of the [EuL<sub>3</sub>]<sup>3+</sup>. Crucially, these micron-scale Eu/Ag-NPs can be applied to substrates, facilitating high-resolution signal acquisition and diverse information encoding within limited space. Validation experiments reveal that PUF labels crafted using Eu/Ag-NPs exhibit inherent randomness and uniqueness, along with stable and repeatable signal output. The strategic self-assembly of Ag-NPs, mediated by [EuL<sub>3</sub>]<sup>3+</sup>, along with the effective modulation of material properties, paves the way for advancing high-resolution, high-information-density solutions in anticounterfeiting technologies.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"6 3","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.701","citationCount":"0","resultStr":"{\"title\":\"Electrostatic Self-Assembly of Ag-NPs Mediated by Eu3+ Complexes for Physically Unclonable Function Labels\",\"authors\":\"Yao Kou,&nbsp;Yanan Guo,&nbsp;Lijuan Liang,&nbsp;Xue Li,&nbsp;Yifan Wang,&nbsp;Pingru Su,&nbsp;Chun-Hua Yan,&nbsp;Yu Tang\",\"doi\":\"10.1002/agt2.701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Physically unclonable functions (PUFs) are essential for anticounterfeiting. Creating high-stability, multimode, and secure labels remains challenging. Herein, we present a novel self-assembly method for modulating the optical signals of rare-earth (RE) complexes via interactions with Ag nanoparticles (Ag-NPs). Initially, we engineered a positively charged Eu<sup>3+</sup> complex ([EuL<sub>3</sub>]<sup>3+</sup>), which promotes the self-assembly of negatively charged Ag-NPs to form Eu/Ag-NPs composites. The assembly of Ag-NPs induces a surface plasmon effect that boosts the luminescent quantum yield and Raman signal intensities, and modifies the luminescence lifetime of the [EuL<sub>3</sub>]<sup>3+</sup>. Crucially, these micron-scale Eu/Ag-NPs can be applied to substrates, facilitating high-resolution signal acquisition and diverse information encoding within limited space. Validation experiments reveal that PUF labels crafted using Eu/Ag-NPs exhibit inherent randomness and uniqueness, along with stable and repeatable signal output. The strategic self-assembly of Ag-NPs, mediated by [EuL<sub>3</sub>]<sup>3+</sup>, along with the effective modulation of material properties, paves the way for advancing high-resolution, high-information-density solutions in anticounterfeiting technologies.</p>\",\"PeriodicalId\":72127,\"journal\":{\"name\":\"Aggregate (Hoboken, N.J.)\",\"volume\":\"6 3\",\"pages\":\"\"},\"PeriodicalIF\":13.9000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.701\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aggregate (Hoboken, N.J.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agt2.701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

物理不可克隆功能(puf)对防伪至关重要。创建高稳定性、多模式和安全的标签仍然具有挑战性。在此,我们提出了一种新的自组装方法,通过与银纳米粒子(Ag- nps)的相互作用来调制稀土(RE)配合物的光信号。首先,我们设计了一个带正电荷的Eu3+配合物([EuL3]3+),它促进带负电荷的Ag-NPs的自组装,形成Eu/Ag-NPs复合材料。Ag-NPs的组装引起表面等离子体效应,提高了发光量子产率和拉曼信号强度,并改变了[EuL3]3+的发光寿命。至关重要的是,这些微米尺度的Eu/Ag-NPs可以应用于衬底,促进高分辨率信号采集和有限空间内的多种信息编码。验证实验表明,使用Eu/ ag - np制作的PUF标签具有固有的随机性和唯一性,以及稳定和可重复的信号输出。由[EuL3]3+介导的Ag-NPs的战略性自组装,以及材料特性的有效调制,为推进高分辨率、高信息密度的防伪技术解决方案铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electrostatic Self-Assembly of Ag-NPs Mediated by Eu3+ Complexes for Physically Unclonable Function Labels

Electrostatic Self-Assembly of Ag-NPs Mediated by Eu3+ Complexes for Physically Unclonable Function Labels

Physically unclonable functions (PUFs) are essential for anticounterfeiting. Creating high-stability, multimode, and secure labels remains challenging. Herein, we present a novel self-assembly method for modulating the optical signals of rare-earth (RE) complexes via interactions with Ag nanoparticles (Ag-NPs). Initially, we engineered a positively charged Eu3+ complex ([EuL3]3+), which promotes the self-assembly of negatively charged Ag-NPs to form Eu/Ag-NPs composites. The assembly of Ag-NPs induces a surface plasmon effect that boosts the luminescent quantum yield and Raman signal intensities, and modifies the luminescence lifetime of the [EuL3]3+. Crucially, these micron-scale Eu/Ag-NPs can be applied to substrates, facilitating high-resolution signal acquisition and diverse information encoding within limited space. Validation experiments reveal that PUF labels crafted using Eu/Ag-NPs exhibit inherent randomness and uniqueness, along with stable and repeatable signal output. The strategic self-assembly of Ag-NPs, mediated by [EuL3]3+, along with the effective modulation of material properties, paves the way for advancing high-resolution, high-information-density solutions in anticounterfeiting technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.40
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信