改善双面隧道氧化物钝化接触太阳能电池的性能:对燃烧诱导降解机制的见解

IF 6 3区 工程技术 Q2 ENERGY & FUELS
Solar RRL Pub Date : 2025-03-02 DOI:10.1002/solr.202400860
Yerin Lee, Hoyoung Song, Dongjin Choi, MyeongSeob Sim, Donghwan Kim, Yoonmook Kang, Hae-Seok Lee
{"title":"改善双面隧道氧化物钝化接触太阳能电池的性能:对燃烧诱导降解机制的见解","authors":"Yerin Lee,&nbsp;Hoyoung Song,&nbsp;Dongjin Choi,&nbsp;MyeongSeob Sim,&nbsp;Donghwan Kim,&nbsp;Yoonmook Kang,&nbsp;Hae-Seok Lee","doi":"10.1002/solr.202400860","DOIUrl":null,"url":null,"abstract":"<p>\nTunnel oxide passivated contact (TOPCon) solar cells achieve efficiencies exceeding 26% by incorporating a heavily doped poly-Si layer with a tunnel oxide, with recent efforts focusing on enhancing the rear passivation structure. In industrial TOPCon cells, the high-temperature firing process during metal contact formation degrades the passivation quality of poly-Si/SiO<sub><i>x</i></sub> contacts, necessitating improvements to maintain cell performance. While previous studies examine degradation factors related to the rear structure, research on mechanisms driven by the firing process remains limited. This study identifies how excess hydrogen, rather than phosphorus in-diffusion, degrades passivation quality by diffusing from SiN<sub><i>x</i></sub> into SiO<sub><i>x</i></sub> during the firing process. Thermal stress during the firing process dissociates c-Si/SiO<sub><i>x</i></sub> bonds, while interstitial hydrogen accumulates at the SiO<i><sub>x</sub></i> interface and forms hydrogen pores as defects, reducing passivation quality. To mitigate this, we introduce an Al<sub>2</sub>O<sub>3</sub> layer as a hydrogen diffusion barrier, effectively preventing hydrogen diffusion into SiO<sub><i>x</i></sub>. This approach increases the implied open-circuit voltage (iV<sub>oc</sub>) after firing, achieving a record 729.8 mV with Al<sub>2</sub>O<sub>3</sub>/SiN<sub><i>x</i></sub> double passivation layers. These findings advance the understanding of degradation mechanisms in industrial TOPCon solar cells during firing and offer practical strategies for optimizing industrial-scale solar cell manufacturing.</p>","PeriodicalId":230,"journal":{"name":"Solar RRL","volume":"9 6","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the Performance of Bifacial Tunnel Oxide Passivated Contact Solar Cells: Insights into Firing-Induced Degradation Mechanisms\",\"authors\":\"Yerin Lee,&nbsp;Hoyoung Song,&nbsp;Dongjin Choi,&nbsp;MyeongSeob Sim,&nbsp;Donghwan Kim,&nbsp;Yoonmook Kang,&nbsp;Hae-Seok Lee\",\"doi\":\"10.1002/solr.202400860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nTunnel oxide passivated contact (TOPCon) solar cells achieve efficiencies exceeding 26% by incorporating a heavily doped poly-Si layer with a tunnel oxide, with recent efforts focusing on enhancing the rear passivation structure. In industrial TOPCon cells, the high-temperature firing process during metal contact formation degrades the passivation quality of poly-Si/SiO<sub><i>x</i></sub> contacts, necessitating improvements to maintain cell performance. While previous studies examine degradation factors related to the rear structure, research on mechanisms driven by the firing process remains limited. This study identifies how excess hydrogen, rather than phosphorus in-diffusion, degrades passivation quality by diffusing from SiN<sub><i>x</i></sub> into SiO<sub><i>x</i></sub> during the firing process. Thermal stress during the firing process dissociates c-Si/SiO<sub><i>x</i></sub> bonds, while interstitial hydrogen accumulates at the SiO<i><sub>x</sub></i> interface and forms hydrogen pores as defects, reducing passivation quality. To mitigate this, we introduce an Al<sub>2</sub>O<sub>3</sub> layer as a hydrogen diffusion barrier, effectively preventing hydrogen diffusion into SiO<sub><i>x</i></sub>. This approach increases the implied open-circuit voltage (iV<sub>oc</sub>) after firing, achieving a record 729.8 mV with Al<sub>2</sub>O<sub>3</sub>/SiN<sub><i>x</i></sub> double passivation layers. These findings advance the understanding of degradation mechanisms in industrial TOPCon solar cells during firing and offer practical strategies for optimizing industrial-scale solar cell manufacturing.</p>\",\"PeriodicalId\":230,\"journal\":{\"name\":\"Solar RRL\",\"volume\":\"9 6\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar RRL\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400860\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar RRL","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/solr.202400860","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

隧道氧化物钝化接触(TOPCon)太阳能电池通过将高掺杂多晶硅层与隧道氧化物结合,实现了超过26%的效率,最近的工作重点是增强后部钝化结构。在工业TOPCon电池中,金属触点形成过程中的高温烧制过程会降低poly-Si/SiOx触点的钝化质量,需要改进以保持电池性能。虽然以前的研究考察了与后部结构相关的退化因素,但对射击过程驱动机制的研究仍然有限。本研究确定了在烧制过程中过量的氢,而不是扩散中的磷,是如何通过从SiNx扩散到SiOx而降低钝化质量的。烧成过程中的热应力使c-Si/SiOx键解离,而间隙氢在SiOx界面积聚并形成氢孔作为缺陷,降低了钝化质量。为了缓解这种情况,我们引入了Al2O3层作为氢扩散屏障,有效地阻止了氢扩散到SiOx中。这种方法增加了烧制后的隐含开路电压(iVoc),在Al2O3/SiNx双钝化层中达到创纪录的729.8 mV。这些发现促进了对工业TOPCon太阳能电池在燃烧过程中的降解机制的理解,并为优化工业规模的太阳能电池制造提供了实用的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the Performance of Bifacial Tunnel Oxide Passivated Contact Solar Cells: Insights into Firing-Induced Degradation Mechanisms

Tunnel oxide passivated contact (TOPCon) solar cells achieve efficiencies exceeding 26% by incorporating a heavily doped poly-Si layer with a tunnel oxide, with recent efforts focusing on enhancing the rear passivation structure. In industrial TOPCon cells, the high-temperature firing process during metal contact formation degrades the passivation quality of poly-Si/SiOx contacts, necessitating improvements to maintain cell performance. While previous studies examine degradation factors related to the rear structure, research on mechanisms driven by the firing process remains limited. This study identifies how excess hydrogen, rather than phosphorus in-diffusion, degrades passivation quality by diffusing from SiNx into SiOx during the firing process. Thermal stress during the firing process dissociates c-Si/SiOx bonds, while interstitial hydrogen accumulates at the SiOx interface and forms hydrogen pores as defects, reducing passivation quality. To mitigate this, we introduce an Al2O3 layer as a hydrogen diffusion barrier, effectively preventing hydrogen diffusion into SiOx. This approach increases the implied open-circuit voltage (iVoc) after firing, achieving a record 729.8 mV with Al2O3/SiNx double passivation layers. These findings advance the understanding of degradation mechanisms in industrial TOPCon solar cells during firing and offer practical strategies for optimizing industrial-scale solar cell manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar RRL
Solar RRL Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
12.10
自引率
6.30%
发文量
460
期刊介绍: Solar RRL, formerly known as Rapid Research Letters, has evolved to embrace a broader and more encompassing format. We publish Research Articles and Reviews covering all facets of solar energy conversion. This includes, but is not limited to, photovoltaics and solar cells (both established and emerging systems), as well as the development, characterization, and optimization of materials and devices. Additionally, we cover topics such as photovoltaic modules and systems, their installation and deployment, photocatalysis, solar fuels, photothermal and photoelectrochemical solar energy conversion, energy distribution, grid issues, and other relevant aspects. Join us in exploring the latest advancements in solar energy conversion research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信