具有扭转6流形和广义Ricci孤子的几乎Calabi-Yau上的黎曼曲率恒等式

IF 1 3区 数学 Q1 MATHEMATICS
S. Ivanov, N. Stanchev
{"title":"具有扭转6流形和广义Ricci孤子的几乎Calabi-Yau上的黎曼曲率恒等式","authors":"S. Ivanov,&nbsp;N. Stanchev","doi":"10.1007/s10231-024-01494-4","DOIUrl":null,"url":null,"abstract":"<div><p>It is observed that on a compact almost complex Calabi–Yau with torsion 6-manifold the Nijenhuis tensor is parallel with respect to the torsion connection. If the torsion is closed then the space is a compact generalized gradient Ricci soliton. In this case, the torsion connection is Ricci-flat if and only if either the norm of the torsion or the Riemannian scalar curvature is constant. On a compact almost complex Calabi–Yau with torsion 6-manifold it is shown that the curvature of the torsion connection is symmetric on exchange of the first and the second pairs and has vanishing Ricci tensor if and only if it satisfies the Riemannian first Bianchi identity.\n</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 2","pages":"513 - 542"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Riemannian curvature identities on almost Calabi–Yau with torsion 6-manifold and generalized Ricci solitons\",\"authors\":\"S. Ivanov,&nbsp;N. Stanchev\",\"doi\":\"10.1007/s10231-024-01494-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is observed that on a compact almost complex Calabi–Yau with torsion 6-manifold the Nijenhuis tensor is parallel with respect to the torsion connection. If the torsion is closed then the space is a compact generalized gradient Ricci soliton. In this case, the torsion connection is Ricci-flat if and only if either the norm of the torsion or the Riemannian scalar curvature is constant. On a compact almost complex Calabi–Yau with torsion 6-manifold it is shown that the curvature of the torsion connection is symmetric on exchange of the first and the second pairs and has vanishing Ricci tensor if and only if it satisfies the Riemannian first Bianchi identity.\\n</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"204 2\",\"pages\":\"513 - 542\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01494-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01494-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在具有扭转6流形的紧致几乎复Calabi-Yau上,Nijenhuis张量相对于扭转连接是平行的。如果扭转是闭合的,则空间是紧化广义梯度Ricci孤子。在这种情况下,扭力连接是里奇平坦的当且仅当扭力范数或黎曼标量曲率是常数。在具有扭转6流形的紧致几乎复Calabi-Yau上,证明了扭转连接的曲率在第一对和第二对交换上是对称的,并且当且仅当它满足黎曼第一Bianchi恒等式时具有消失的Ricci张量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Riemannian curvature identities on almost Calabi–Yau with torsion 6-manifold and generalized Ricci solitons

It is observed that on a compact almost complex Calabi–Yau with torsion 6-manifold the Nijenhuis tensor is parallel with respect to the torsion connection. If the torsion is closed then the space is a compact generalized gradient Ricci soliton. In this case, the torsion connection is Ricci-flat if and only if either the norm of the torsion or the Riemannian scalar curvature is constant. On a compact almost complex Calabi–Yau with torsion 6-manifold it is shown that the curvature of the torsion connection is symmetric on exchange of the first and the second pairs and has vanishing Ricci tensor if and only if it satisfies the Riemannian first Bianchi identity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
99
审稿时长
>12 weeks
期刊介绍: This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it). A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信