湍流条件下的粒子聚集非惯性模型

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Franco Flandoli, Ruojun Huang
{"title":"湍流条件下的粒子聚集非惯性模型","authors":"Franco Flandoli,&nbsp;Ruojun Huang","doi":"10.1007/s10955-025-03437-6","DOIUrl":null,"url":null,"abstract":"<div><p>We consider an abstract non-inertial model of aggregation under the influence of a Gaussian white noise with prescribed space-covariance, and prove a formula for the mean collision rate <i>R</i>, per unit of time and volume. Specializing the abstract theory to a non-inertial model obtained by an inertial one, with physical constants, in the limit of infinitesimal relaxation time of the particles, and the white noise obtained as an approximation of a Gaussian noise with correlation time <span>\\(\\tau _{\\eta }\\)</span>, up to approximations the formula reads <span>\\(R\\sim \\tau _{\\eta }\\left\\langle \\left| \\Delta _{a}u\\right| ^{2}\\right\\rangle a\\cdot n^{2}\\)</span> where <i>n</i> is the particle number per unit of volume and <span>\\(\\left\\langle \\left| \\Delta _{a}u\\right| ^{2}\\right\\rangle \\)</span> is the square-average of the increment of random velocity field <i>u</i> between points at distance <i>a</i>, the particle radius. If we choose the Kolmogorov time scale <span>\\(\\tau _{\\eta }\\sim \\left( \\frac{\\nu }{\\varepsilon }\\right) ^{1/2}\\)</span> and we assume that <i>a</i> is in the dissipative range where <span>\\(\\left\\langle \\left| \\Delta _{a}u\\right| ^{2}\\right\\rangle \\sim \\left( \\frac{\\varepsilon }{\\nu }\\right) a^{2}\\)</span>, we get Saffman–Turner formula for the collision rate <i>R</i>.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10955-025-03437-6.pdf","citationCount":"0","resultStr":"{\"title\":\"A Non-inertial Model for Particle Aggregation Under Turbulence\",\"authors\":\"Franco Flandoli,&nbsp;Ruojun Huang\",\"doi\":\"10.1007/s10955-025-03437-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider an abstract non-inertial model of aggregation under the influence of a Gaussian white noise with prescribed space-covariance, and prove a formula for the mean collision rate <i>R</i>, per unit of time and volume. Specializing the abstract theory to a non-inertial model obtained by an inertial one, with physical constants, in the limit of infinitesimal relaxation time of the particles, and the white noise obtained as an approximation of a Gaussian noise with correlation time <span>\\\\(\\\\tau _{\\\\eta }\\\\)</span>, up to approximations the formula reads <span>\\\\(R\\\\sim \\\\tau _{\\\\eta }\\\\left\\\\langle \\\\left| \\\\Delta _{a}u\\\\right| ^{2}\\\\right\\\\rangle a\\\\cdot n^{2}\\\\)</span> where <i>n</i> is the particle number per unit of volume and <span>\\\\(\\\\left\\\\langle \\\\left| \\\\Delta _{a}u\\\\right| ^{2}\\\\right\\\\rangle \\\\)</span> is the square-average of the increment of random velocity field <i>u</i> between points at distance <i>a</i>, the particle radius. If we choose the Kolmogorov time scale <span>\\\\(\\\\tau _{\\\\eta }\\\\sim \\\\left( \\\\frac{\\\\nu }{\\\\varepsilon }\\\\right) ^{1/2}\\\\)</span> and we assume that <i>a</i> is in the dissipative range where <span>\\\\(\\\\left\\\\langle \\\\left| \\\\Delta _{a}u\\\\right| ^{2}\\\\right\\\\rangle \\\\sim \\\\left( \\\\frac{\\\\varepsilon }{\\\\nu }\\\\right) a^{2}\\\\)</span>, we get Saffman–Turner formula for the collision rate <i>R</i>.</p></div>\",\"PeriodicalId\":667,\"journal\":{\"name\":\"Journal of Statistical Physics\",\"volume\":\"192 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10955-025-03437-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10955-025-03437-6\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03437-6","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Non-inertial Model for Particle Aggregation Under Turbulence

We consider an abstract non-inertial model of aggregation under the influence of a Gaussian white noise with prescribed space-covariance, and prove a formula for the mean collision rate R, per unit of time and volume. Specializing the abstract theory to a non-inertial model obtained by an inertial one, with physical constants, in the limit of infinitesimal relaxation time of the particles, and the white noise obtained as an approximation of a Gaussian noise with correlation time \(\tau _{\eta }\), up to approximations the formula reads \(R\sim \tau _{\eta }\left\langle \left| \Delta _{a}u\right| ^{2}\right\rangle a\cdot n^{2}\) where n is the particle number per unit of volume and \(\left\langle \left| \Delta _{a}u\right| ^{2}\right\rangle \) is the square-average of the increment of random velocity field u between points at distance a, the particle radius. If we choose the Kolmogorov time scale \(\tau _{\eta }\sim \left( \frac{\nu }{\varepsilon }\right) ^{1/2}\) and we assume that a is in the dissipative range where \(\left\langle \left| \Delta _{a}u\right| ^{2}\right\rangle \sim \left( \frac{\varepsilon }{\nu }\right) a^{2}\), we get Saffman–Turner formula for the collision rate R.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信