{"title":"平面的张紧至少在二阶上保持正割正则性","authors":"E. Ballico, A. Bernardi, T. Mańdziuk","doi":"10.1007/s10231-024-01493-5","DOIUrl":null,"url":null,"abstract":"<div><p>Starting from an integral projective variety <i>Y</i> equipped with a very ample, non-special and not-secant defective line bundle <span>\\(\\mathcal {L}\\)</span>, the paper establishes, under certain conditions, the regularity of <span>\\((Y \\times {\\mathbb {P}}^2,\\mathcal {L}[t])\\)</span> for <span>\\(t\\ge 2\\)</span>. The mildness of those conditions allow to classify all secant defective cases of any product of <span>\\(({\\mathbb {P}}^1)^{ j}\\times ({\\mathbb {P}}^2)^{k}\\)</span>, <span>\\(j,k \\ge 0\\)</span>, embedded in multidegree at least <span>\\((2, \\ldots , 2)\\)</span> and <span>\\((\\mathbb {P}^m\\times \\mathbb {P}^n\\times (\\mathbb {P}^2)^k, \\mathcal {O}_{\\mathbb {P}^m\\times \\mathbb {P}^n\\times (\\mathbb {P}^2)^k} (d,e,t_1, \\ldots , t_k))\\)</span> where <span>\\(d,e \\ge 3\\)</span>, <span>\\(t_i\\ge 2\\)</span>, for any <i>n</i> and <i>m</i>.</p></div>","PeriodicalId":8265,"journal":{"name":"Annali di Matematica Pura ed Applicata","volume":"204 2","pages":"489 - 511"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tensoring by a plane maintains secant-regularity in degree at least two\",\"authors\":\"E. Ballico, A. Bernardi, T. Mańdziuk\",\"doi\":\"10.1007/s10231-024-01493-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Starting from an integral projective variety <i>Y</i> equipped with a very ample, non-special and not-secant defective line bundle <span>\\\\(\\\\mathcal {L}\\\\)</span>, the paper establishes, under certain conditions, the regularity of <span>\\\\((Y \\\\times {\\\\mathbb {P}}^2,\\\\mathcal {L}[t])\\\\)</span> for <span>\\\\(t\\\\ge 2\\\\)</span>. The mildness of those conditions allow to classify all secant defective cases of any product of <span>\\\\(({\\\\mathbb {P}}^1)^{ j}\\\\times ({\\\\mathbb {P}}^2)^{k}\\\\)</span>, <span>\\\\(j,k \\\\ge 0\\\\)</span>, embedded in multidegree at least <span>\\\\((2, \\\\ldots , 2)\\\\)</span> and <span>\\\\((\\\\mathbb {P}^m\\\\times \\\\mathbb {P}^n\\\\times (\\\\mathbb {P}^2)^k, \\\\mathcal {O}_{\\\\mathbb {P}^m\\\\times \\\\mathbb {P}^n\\\\times (\\\\mathbb {P}^2)^k} (d,e,t_1, \\\\ldots , t_k))\\\\)</span> where <span>\\\\(d,e \\\\ge 3\\\\)</span>, <span>\\\\(t_i\\\\ge 2\\\\)</span>, for any <i>n</i> and <i>m</i>.</p></div>\",\"PeriodicalId\":8265,\"journal\":{\"name\":\"Annali di Matematica Pura ed Applicata\",\"volume\":\"204 2\",\"pages\":\"489 - 511\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali di Matematica Pura ed Applicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10231-024-01493-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali di Matematica Pura ed Applicata","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10231-024-01493-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Tensoring by a plane maintains secant-regularity in degree at least two
Starting from an integral projective variety Y equipped with a very ample, non-special and not-secant defective line bundle \(\mathcal {L}\), the paper establishes, under certain conditions, the regularity of \((Y \times {\mathbb {P}}^2,\mathcal {L}[t])\) for \(t\ge 2\). The mildness of those conditions allow to classify all secant defective cases of any product of \(({\mathbb {P}}^1)^{ j}\times ({\mathbb {P}}^2)^{k}\), \(j,k \ge 0\), embedded in multidegree at least \((2, \ldots , 2)\) and \((\mathbb {P}^m\times \mathbb {P}^n\times (\mathbb {P}^2)^k, \mathcal {O}_{\mathbb {P}^m\times \mathbb {P}^n\times (\mathbb {P}^2)^k} (d,e,t_1, \ldots , t_k))\) where \(d,e \ge 3\), \(t_i\ge 2\), for any n and m.
期刊介绍:
This journal, the oldest scientific periodical in Italy, was originally edited by Barnaba Tortolini and Francesco Brioschi and has appeared since 1850. Nowadays it is managed by a nonprofit organization, the Fondazione Annali di Matematica Pura ed Applicata, c.o. Dipartimento di Matematica "U. Dini", viale Morgagni 67A, 50134 Firenze, Italy, e-mail annali@math.unifi.it).
A board of Italian university professors governs the Fondazione and appoints the editors of the journal, whose responsibility it is to supervise the refereeing process. The names of governors and editors appear on the front page of each issue. Their addresses appear in the title pages of each issue.