{"title":"应力补偿型TiO2和SiO2多层抗反射涂层低温PEALD工艺的研究","authors":"Duy Thanh Cu, Kuan-Yu Ko, Wen-Hao Cho, Chao-Te Lee, Meng-Chi Li, Chien-Cheng Kuo","doi":"10.1186/s11671-025-04238-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a low-temperature plasma-enhanced atomic layer deposition (PEALD) technique for fabricating high-performance, stress-reduced anti-reflective coatings (ARCs). To the best of our knowledge, this is the first extensive study on titanium dioxide (TiO<sub>2</sub>)/silicon dioxide (SiO<sub>2</sub>) stacking with PEALD at such a low temperature of 70 °C, which may help to overcome high-temperature deposition issues and mechanical stress for polymer substrates. Despite the presence of impurities in the low-temperature deposited films, the measured extinction coefficient (k < 10<sup>–4</sup>) indicates negligible optical absorption in both TiO<sub>2</sub> and SiO<sub>2</sub> layers, ensuring optimal performance for ARCs. Stress compensation is observed between tensile TiO<sub>2</sub> films (≈ 220 MPa) and compressive SiO<sub>2</sub> films (≈ − 35 MPa). For multi-layer ARCs, this combination strategy leads to a very low total stress of 48 MPa, which is a big step forward for stress control in optical coatings. This stress-reduction effect remains effective even when the thickness difference reaches up to 9.6%. This consistency has been demonstrated in real-world applications, where achieving an ideal level of thinness can be challenging. The optimized process at 150 W plasma power produces high-quality optics with an average reflectivity of 0.35% in the visible range while maintaining low stress, a significant achievement in low temperature deposited optical coatings. The choice of common, cost-effective materials like SiO<sub>2</sub> and TiO<sub>2</sub> makes this approach easily scalable for industrial use and can see the future of manufacturing ARCs for various applications. These films are characterized by a low density of defects and an amorphous structure with the smoothness of their surface being close to one atomic monolayer (≈ 0.2 nm), which indicates their high optical quality, comparable to films deposited at high temperatures. The low-temperature PEALD presented in this work not only pushes the boundary in advanced optical coatings but also enlarges the capacity in coating temperature-sensitive substrates and complex 3D structures. This innovation paves the way for applications in bendable electronics, high-performance optical components, and next generation display devices.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04238-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of an innovative low-temperature PEALD process for stress-compensated TiO2 and SiO2 multilayer anti-reflective coatings\",\"authors\":\"Duy Thanh Cu, Kuan-Yu Ko, Wen-Hao Cho, Chao-Te Lee, Meng-Chi Li, Chien-Cheng Kuo\",\"doi\":\"10.1186/s11671-025-04238-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a low-temperature plasma-enhanced atomic layer deposition (PEALD) technique for fabricating high-performance, stress-reduced anti-reflective coatings (ARCs). To the best of our knowledge, this is the first extensive study on titanium dioxide (TiO<sub>2</sub>)/silicon dioxide (SiO<sub>2</sub>) stacking with PEALD at such a low temperature of 70 °C, which may help to overcome high-temperature deposition issues and mechanical stress for polymer substrates. Despite the presence of impurities in the low-temperature deposited films, the measured extinction coefficient (k < 10<sup>–4</sup>) indicates negligible optical absorption in both TiO<sub>2</sub> and SiO<sub>2</sub> layers, ensuring optimal performance for ARCs. Stress compensation is observed between tensile TiO<sub>2</sub> films (≈ 220 MPa) and compressive SiO<sub>2</sub> films (≈ − 35 MPa). For multi-layer ARCs, this combination strategy leads to a very low total stress of 48 MPa, which is a big step forward for stress control in optical coatings. This stress-reduction effect remains effective even when the thickness difference reaches up to 9.6%. This consistency has been demonstrated in real-world applications, where achieving an ideal level of thinness can be challenging. The optimized process at 150 W plasma power produces high-quality optics with an average reflectivity of 0.35% in the visible range while maintaining low stress, a significant achievement in low temperature deposited optical coatings. The choice of common, cost-effective materials like SiO<sub>2</sub> and TiO<sub>2</sub> makes this approach easily scalable for industrial use and can see the future of manufacturing ARCs for various applications. These films are characterized by a low density of defects and an amorphous structure with the smoothness of their surface being close to one atomic monolayer (≈ 0.2 nm), which indicates their high optical quality, comparable to films deposited at high temperatures. The low-temperature PEALD presented in this work not only pushes the boundary in advanced optical coatings but also enlarges the capacity in coating temperature-sensitive substrates and complex 3D structures. This innovation paves the way for applications in bendable electronics, high-performance optical components, and next generation display devices.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-025-04238-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-025-04238-2\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04238-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of an innovative low-temperature PEALD process for stress-compensated TiO2 and SiO2 multilayer anti-reflective coatings
This study presents a low-temperature plasma-enhanced atomic layer deposition (PEALD) technique for fabricating high-performance, stress-reduced anti-reflective coatings (ARCs). To the best of our knowledge, this is the first extensive study on titanium dioxide (TiO2)/silicon dioxide (SiO2) stacking with PEALD at such a low temperature of 70 °C, which may help to overcome high-temperature deposition issues and mechanical stress for polymer substrates. Despite the presence of impurities in the low-temperature deposited films, the measured extinction coefficient (k < 10–4) indicates negligible optical absorption in both TiO2 and SiO2 layers, ensuring optimal performance for ARCs. Stress compensation is observed between tensile TiO2 films (≈ 220 MPa) and compressive SiO2 films (≈ − 35 MPa). For multi-layer ARCs, this combination strategy leads to a very low total stress of 48 MPa, which is a big step forward for stress control in optical coatings. This stress-reduction effect remains effective even when the thickness difference reaches up to 9.6%. This consistency has been demonstrated in real-world applications, where achieving an ideal level of thinness can be challenging. The optimized process at 150 W plasma power produces high-quality optics with an average reflectivity of 0.35% in the visible range while maintaining low stress, a significant achievement in low temperature deposited optical coatings. The choice of common, cost-effective materials like SiO2 and TiO2 makes this approach easily scalable for industrial use and can see the future of manufacturing ARCs for various applications. These films are characterized by a low density of defects and an amorphous structure with the smoothness of their surface being close to one atomic monolayer (≈ 0.2 nm), which indicates their high optical quality, comparable to films deposited at high temperatures. The low-temperature PEALD presented in this work not only pushes the boundary in advanced optical coatings but also enlarges the capacity in coating temperature-sensitive substrates and complex 3D structures. This innovation paves the way for applications in bendable electronics, high-performance optical components, and next generation display devices.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.