Vu Van Thuy, Nguyen Truong Son, Vu Hoang Ha, Le Xuan Duong and Tran Viet Thu
{"title":"富钠镍钴六氰高铁酸盐在水电解质中增强储能性能†","authors":"Vu Van Thuy, Nguyen Truong Son, Vu Hoang Ha, Le Xuan Duong and Tran Viet Thu","doi":"10.1039/D4NJ04067H","DOIUrl":null,"url":null,"abstract":"<p >Prussian blue analogues (PBAs) are promising positive electrodes in sodium-ion batteries because of their three-dimensional structure, high capacity, and low-cost. In this work, we synthesize sodium-rich nickel–cobalt hexacyanoferrate (Na<small><sup>+</sup></small>-rich Ni<small><sub><em>x</em></sub></small>Co<small><sub><em>y</em></sub></small>HCF) and study the influence of Na<small><sup>+</sup></small> incorporation on the structure and electrochemical properties of the resulting material alongside Ni<small><sub><em>x</em></sub></small>Co<small><sub><em>y</em></sub></small>HCF, NiHCF, and CoHCF. The Na<small><sup>+</sup></small> incorporation introduces minor lattice distortions but retains the fundamental crystal structure of Ni<small><sub><em>x</em></sub></small>Co<small><sub><em>y</em></sub></small>HCF and facilitates Na<small><sup>+</sup></small> diffusion. Na<small><sup>+</sup></small>-rich Ni<small><sub><em>x</em></sub></small>Co<small><sub><em>y</em></sub></small>HCF exhibited a significantly enhanced specific capacity of 303.15 F g<small><sup>−1</sup></small> at a current density of 1.0 A g<small><sup>−1</sup></small> in an aqueous electrolyte compared to its non-Na<small><sup>+</sup></small> counterparts. The assembled hybrid device delivered a high energy density of 166.15 μW h cm<small><sup>−2</sup></small> at a power density of 1800 μW cm<small><sup>−2</sup></small> and 83.7% capacity retention over 2000 cycles at 5 mA cm<small><sup>−2</sup></small>. These results indicate that Na<small><sup>+</sup></small> incorporation is an efficient strategy to prepare high-performance electrodes for aqueous Na-ion storage.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 13","pages":" 5545-5554"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sodium-rich nickel–cobalt hexacyanoferrates for enhanced energy storage performance in aqueous electrolytes†\",\"authors\":\"Vu Van Thuy, Nguyen Truong Son, Vu Hoang Ha, Le Xuan Duong and Tran Viet Thu\",\"doi\":\"10.1039/D4NJ04067H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Prussian blue analogues (PBAs) are promising positive electrodes in sodium-ion batteries because of their three-dimensional structure, high capacity, and low-cost. In this work, we synthesize sodium-rich nickel–cobalt hexacyanoferrate (Na<small><sup>+</sup></small>-rich Ni<small><sub><em>x</em></sub></small>Co<small><sub><em>y</em></sub></small>HCF) and study the influence of Na<small><sup>+</sup></small> incorporation on the structure and electrochemical properties of the resulting material alongside Ni<small><sub><em>x</em></sub></small>Co<small><sub><em>y</em></sub></small>HCF, NiHCF, and CoHCF. The Na<small><sup>+</sup></small> incorporation introduces minor lattice distortions but retains the fundamental crystal structure of Ni<small><sub><em>x</em></sub></small>Co<small><sub><em>y</em></sub></small>HCF and facilitates Na<small><sup>+</sup></small> diffusion. Na<small><sup>+</sup></small>-rich Ni<small><sub><em>x</em></sub></small>Co<small><sub><em>y</em></sub></small>HCF exhibited a significantly enhanced specific capacity of 303.15 F g<small><sup>−1</sup></small> at a current density of 1.0 A g<small><sup>−1</sup></small> in an aqueous electrolyte compared to its non-Na<small><sup>+</sup></small> counterparts. The assembled hybrid device delivered a high energy density of 166.15 μW h cm<small><sup>−2</sup></small> at a power density of 1800 μW cm<small><sup>−2</sup></small> and 83.7% capacity retention over 2000 cycles at 5 mA cm<small><sup>−2</sup></small>. These results indicate that Na<small><sup>+</sup></small> incorporation is an efficient strategy to prepare high-performance electrodes for aqueous Na-ion storage.</p>\",\"PeriodicalId\":95,\"journal\":{\"name\":\"New Journal of Chemistry\",\"volume\":\" 13\",\"pages\":\" 5545-5554\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Journal of Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj04067h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj04067h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
普鲁士蓝类似物(PBAs)具有三维结构、高容量和低成本等优点,在钠离子电池中具有广阔的应用前景。在这项工作中,我们合成了富钠镍钴六氰铁酸盐(Na+-rich NixCoyHCF),并研究了Na+掺入对NixCoyHCF、NiHCF和CoHCF的结构和电化学性能的影响。Na+的掺入引起了轻微的晶格畸变,但保留了NixCoyHCF的基本晶体结构,促进了Na+的扩散。在水溶液中,当电流密度为1.0 a g−1时,富Na+ NixCoyHCF比非Na+ NixCoyHCF的比容量显著提高,达到303.15 F g−1。在1800 μW cm−2的功率密度下,该器件的能量密度高达166.15 μW h cm−2,在5ma cm−2下,2000次循环的容量保持率为83.7%。这些结果表明,Na+掺入是制备高性能钠离子存储电极的有效策略。
Sodium-rich nickel–cobalt hexacyanoferrates for enhanced energy storage performance in aqueous electrolytes†
Prussian blue analogues (PBAs) are promising positive electrodes in sodium-ion batteries because of their three-dimensional structure, high capacity, and low-cost. In this work, we synthesize sodium-rich nickel–cobalt hexacyanoferrate (Na+-rich NixCoyHCF) and study the influence of Na+ incorporation on the structure and electrochemical properties of the resulting material alongside NixCoyHCF, NiHCF, and CoHCF. The Na+ incorporation introduces minor lattice distortions but retains the fundamental crystal structure of NixCoyHCF and facilitates Na+ diffusion. Na+-rich NixCoyHCF exhibited a significantly enhanced specific capacity of 303.15 F g−1 at a current density of 1.0 A g−1 in an aqueous electrolyte compared to its non-Na+ counterparts. The assembled hybrid device delivered a high energy density of 166.15 μW h cm−2 at a power density of 1800 μW cm−2 and 83.7% capacity retention over 2000 cycles at 5 mA cm−2. These results indicate that Na+ incorporation is an efficient strategy to prepare high-performance electrodes for aqueous Na-ion storage.