{"title":"设计双相 ZnO-Al2O3-CuO 纳米结构以提高超级电容器性能","authors":"Abdulkadeem Sanni , Durai Govindarajan , Supinya Nijpanich , Wanwisa Limphirat , Mongkol Tipplook , Katsuya Teshima , Sambasivam Sangaraju , Soorathep Kheawhom","doi":"10.1016/j.materresbull.2025.113443","DOIUrl":null,"url":null,"abstract":"<div><div>The development of supercapacitors with enhanced energy density and durability is a critical challenge for next-generation energy storage. Here, we present a ZnO-Al<sub>2</sub>O<sub>3</sub>-CuO (ZAC) nanocomposite synthesized via a hydrothermal method, integrating dual-phase architectures of Al<sub>2</sub>O<sub>3</sub>-induced nanorods and CuO-derived nanoflowers. This unique morphology achieves over a twofold increase in surface area compared to pristine ZnO, significantly enhancing electrode–electrolyte interactions. Electrochemical evaluation reveals a high specific capacitance of 453.15 F/g at 5 mV/s and robust cycling stability, retaining 89.12 % of capacitance after 12,000 cycles in 3 M KOH. As part of an asymmetric supercapacitor, the ZAC-based device delivers 47.29 Wh/kg at 750 W/kg. These findings underscore the potential of morphology-controlled nanocomposites in advancing high-performance supercapacitor technology.</div></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":"189 ","pages":"Article 113443"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing dual-phase ZnO-Al2O3-CuO nanostructures for enhanced supercapacitor performance\",\"authors\":\"Abdulkadeem Sanni , Durai Govindarajan , Supinya Nijpanich , Wanwisa Limphirat , Mongkol Tipplook , Katsuya Teshima , Sambasivam Sangaraju , Soorathep Kheawhom\",\"doi\":\"10.1016/j.materresbull.2025.113443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of supercapacitors with enhanced energy density and durability is a critical challenge for next-generation energy storage. Here, we present a ZnO-Al<sub>2</sub>O<sub>3</sub>-CuO (ZAC) nanocomposite synthesized via a hydrothermal method, integrating dual-phase architectures of Al<sub>2</sub>O<sub>3</sub>-induced nanorods and CuO-derived nanoflowers. This unique morphology achieves over a twofold increase in surface area compared to pristine ZnO, significantly enhancing electrode–electrolyte interactions. Electrochemical evaluation reveals a high specific capacitance of 453.15 F/g at 5 mV/s and robust cycling stability, retaining 89.12 % of capacitance after 12,000 cycles in 3 M KOH. As part of an asymmetric supercapacitor, the ZAC-based device delivers 47.29 Wh/kg at 750 W/kg. These findings underscore the potential of morphology-controlled nanocomposites in advancing high-performance supercapacitor technology.</div></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":\"189 \",\"pages\":\"Article 113443\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025540825001515\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025540825001515","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
开发具有更高能量密度和耐久性的超级电容器是下一代储能的关键挑战。本文采用水热法合成了一种ZnO-Al2O3-CuO (ZAC)纳米复合材料,结合了al2o3诱导的纳米棒和cuo衍生的纳米花的双相结构。与原始ZnO相比,这种独特的形貌使其表面积增加了两倍以上,显著增强了电极-电解质的相互作用。电化学评价表明,该材料在5 mV/s下的比电容高达453.15 F/g,循环稳定性强,在3 M KOH条件下循环12,000次后仍保持89.12%的电容。作为非对称超级电容器的一部分,基于zac的器件在750 W/kg时可提供47.29 Wh/kg的功率。这些发现强调了形态控制纳米复合材料在推进高性能超级电容器技术方面的潜力。
Designing dual-phase ZnO-Al2O3-CuO nanostructures for enhanced supercapacitor performance
The development of supercapacitors with enhanced energy density and durability is a critical challenge for next-generation energy storage. Here, we present a ZnO-Al2O3-CuO (ZAC) nanocomposite synthesized via a hydrothermal method, integrating dual-phase architectures of Al2O3-induced nanorods and CuO-derived nanoflowers. This unique morphology achieves over a twofold increase in surface area compared to pristine ZnO, significantly enhancing electrode–electrolyte interactions. Electrochemical evaluation reveals a high specific capacitance of 453.15 F/g at 5 mV/s and robust cycling stability, retaining 89.12 % of capacitance after 12,000 cycles in 3 M KOH. As part of an asymmetric supercapacitor, the ZAC-based device delivers 47.29 Wh/kg at 750 W/kg. These findings underscore the potential of morphology-controlled nanocomposites in advancing high-performance supercapacitor technology.
期刊介绍:
Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.