重型柴油机湿式缸套气蚀失效分析及机理研究

IF 4.4 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Dong Liu , Lintao Li , Guoxing Li , Nannan Sun , Guixiang Zhu , Tie Wang , Fengshou Gu
{"title":"重型柴油机湿式缸套气蚀失效分析及机理研究","authors":"Dong Liu ,&nbsp;Lintao Li ,&nbsp;Guoxing Li ,&nbsp;Nannan Sun ,&nbsp;Guixiang Zhu ,&nbsp;Tie Wang ,&nbsp;Fengshou Gu","doi":"10.1016/j.engfailanal.2025.109547","DOIUrl":null,"url":null,"abstract":"<div><div>Cavitation failure of the cylinder liner is one of the main reliability problems in heavy-duty diesel engines. It can shorten engine lifespan, increase maintenance costs, and even lead to catastrophic failures. This paper conducts a systematic study of cylinder liner cavitation by integrating microstructure analysis, cavitation process observation, and numerical simulation. The morphology and chemical composition of the damaged regions are analysed at both macro and micro levels, providing comprehensive insights into the cavitation erosion behaviour and damage mechanisms. The vibration and pressure fluctuation characteristics of the cylinder liner-water jacket system are investigated by a structure-acoustic coupling model. The predicted cavitation risk regions of the cylinder liner are in good agreement with the actual cavitation erosion regions. Cavitation damage is primarily concentrated within a 26 mm vertical zone adjacent to the lower seal of the cylinder liner. The minimum pressure in the water jacket occurs at 373.3 °CA. When the engine speed exceeds 1400 rpm, the risk of cavitation arises and progressively intensifies with increasing speed and load. The results enrich the theoretical system of cavitation erosion in cylinder liners and provide a valuable reference for the cavitation prediction and mitigation.</div></div>","PeriodicalId":11677,"journal":{"name":"Engineering Failure Analysis","volume":"174 ","pages":"Article 109547"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cavitation failure analysis and mechanism study of the wet cylinder liner in heavy-duty diesel engines\",\"authors\":\"Dong Liu ,&nbsp;Lintao Li ,&nbsp;Guoxing Li ,&nbsp;Nannan Sun ,&nbsp;Guixiang Zhu ,&nbsp;Tie Wang ,&nbsp;Fengshou Gu\",\"doi\":\"10.1016/j.engfailanal.2025.109547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cavitation failure of the cylinder liner is one of the main reliability problems in heavy-duty diesel engines. It can shorten engine lifespan, increase maintenance costs, and even lead to catastrophic failures. This paper conducts a systematic study of cylinder liner cavitation by integrating microstructure analysis, cavitation process observation, and numerical simulation. The morphology and chemical composition of the damaged regions are analysed at both macro and micro levels, providing comprehensive insights into the cavitation erosion behaviour and damage mechanisms. The vibration and pressure fluctuation characteristics of the cylinder liner-water jacket system are investigated by a structure-acoustic coupling model. The predicted cavitation risk regions of the cylinder liner are in good agreement with the actual cavitation erosion regions. Cavitation damage is primarily concentrated within a 26 mm vertical zone adjacent to the lower seal of the cylinder liner. The minimum pressure in the water jacket occurs at 373.3 °CA. When the engine speed exceeds 1400 rpm, the risk of cavitation arises and progressively intensifies with increasing speed and load. The results enrich the theoretical system of cavitation erosion in cylinder liners and provide a valuable reference for the cavitation prediction and mitigation.</div></div>\",\"PeriodicalId\":11677,\"journal\":{\"name\":\"Engineering Failure Analysis\",\"volume\":\"174 \",\"pages\":\"Article 109547\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Failure Analysis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350630725002882\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Failure Analysis","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350630725002882","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

汽缸套气蚀失效是重型柴油机可靠性的主要问题之一。它会缩短发动机寿命,增加维护成本,甚至导致灾难性故障。本文采用微观结构分析、空化过程观察和数值模拟相结合的方法对气缸套空化进行了系统的研究。从宏观和微观两个层面分析了损伤区域的形态和化学成分,为空化侵蚀行为和损伤机制提供了全面的见解。采用结构-声耦合模型研究了缸套-水套系统的振动和压力脉动特性。预测的汽缸套空化危险区域与实际的空化侵蚀区域吻合较好。空化损伤主要集中在靠近汽缸套下部密封的26毫米垂直区域内。水套内的最小压力出现在373.3°CA。当发动机转速超过1400转/分时,空化的危险就会出现,并随着转速和负荷的增加而逐渐加剧。研究结果丰富了缸套气蚀的理论体系,为气蚀预测和防治提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cavitation failure analysis and mechanism study of the wet cylinder liner in heavy-duty diesel engines
Cavitation failure of the cylinder liner is one of the main reliability problems in heavy-duty diesel engines. It can shorten engine lifespan, increase maintenance costs, and even lead to catastrophic failures. This paper conducts a systematic study of cylinder liner cavitation by integrating microstructure analysis, cavitation process observation, and numerical simulation. The morphology and chemical composition of the damaged regions are analysed at both macro and micro levels, providing comprehensive insights into the cavitation erosion behaviour and damage mechanisms. The vibration and pressure fluctuation characteristics of the cylinder liner-water jacket system are investigated by a structure-acoustic coupling model. The predicted cavitation risk regions of the cylinder liner are in good agreement with the actual cavitation erosion regions. Cavitation damage is primarily concentrated within a 26 mm vertical zone adjacent to the lower seal of the cylinder liner. The minimum pressure in the water jacket occurs at 373.3 °CA. When the engine speed exceeds 1400 rpm, the risk of cavitation arises and progressively intensifies with increasing speed and load. The results enrich the theoretical system of cavitation erosion in cylinder liners and provide a valuable reference for the cavitation prediction and mitigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Failure Analysis
Engineering Failure Analysis 工程技术-材料科学:表征与测试
CiteScore
7.70
自引率
20.00%
发文量
956
审稿时长
47 days
期刊介绍: Engineering Failure Analysis publishes research papers describing the analysis of engineering failures and related studies. Papers relating to the structure, properties and behaviour of engineering materials are encouraged, particularly those which also involve the detailed application of materials parameters to problems in engineering structures, components and design. In addition to the area of materials engineering, the interacting fields of mechanical, manufacturing, aeronautical, civil, chemical, corrosion and design engineering are considered relevant. Activity should be directed at analysing engineering failures and carrying out research to help reduce the incidences of failures and to extend the operating horizons of engineering materials. Emphasis is placed on the mechanical properties of materials and their behaviour when influenced by structure, process and environment. Metallic, polymeric, ceramic and natural materials are all included and the application of these materials to real engineering situations should be emphasised. The use of a case-study based approach is also encouraged. Engineering Failure Analysis provides essential reference material and critical feedback into the design process thereby contributing to the prevention of engineering failures in the future. All submissions will be subject to peer review from leading experts in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信