使用改进的ResUNet从CT图像中自动分割肝脏

R.V. Manjunath , Yashaswini Gowda N , H.M. Manu
{"title":"使用改进的ResUNet从CT图像中自动分割肝脏","authors":"R.V. Manjunath ,&nbsp;Yashaswini Gowda N ,&nbsp;H.M. Manu","doi":"10.1016/j.gande.2025.03.002","DOIUrl":null,"url":null,"abstract":"<div><div>The Segmentation of liver from computed tomography (CT) images is a critical task in medical research particularly when employing deep learning methods. Most doctors prefer to use Computed tomography images for liver disease identification hence automatic liver segmentation plays a decisive role. To perform automatic segmentation of liver popular architectures such as modified ResUNet are specifically designed to capture multi-resolution features. In this study we proposed an automatic system that utilizes convolutional layers to efficiently extract features while maintaining spatial information. A modified Residual UNet model was developed for liver segmentation using the 3Dircadb dataset, the model demonstrated excellent performance by achieving a Dice Score of <strong>93.08 ​%</strong>, accuracy of 98.57 ​%, Jaccard Index of 87.12 ​%, a volumetric overlap error of 12.87 ​%, and a relative volume difference of 14.91 ​% on 128x128 size images. These results highlight the effectiveness of the proposed method. The primary goal of this research is to apply deep learning techniques for liver segmentation and assess the model's performance using segmentation metrics.</div></div>","PeriodicalId":100571,"journal":{"name":"Gastroenterology & Endoscopy","volume":"3 2","pages":"Pages 93-104"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated liver segmentation from CT images using modified ResUNet\",\"authors\":\"R.V. Manjunath ,&nbsp;Yashaswini Gowda N ,&nbsp;H.M. Manu\",\"doi\":\"10.1016/j.gande.2025.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Segmentation of liver from computed tomography (CT) images is a critical task in medical research particularly when employing deep learning methods. Most doctors prefer to use Computed tomography images for liver disease identification hence automatic liver segmentation plays a decisive role. To perform automatic segmentation of liver popular architectures such as modified ResUNet are specifically designed to capture multi-resolution features. In this study we proposed an automatic system that utilizes convolutional layers to efficiently extract features while maintaining spatial information. A modified Residual UNet model was developed for liver segmentation using the 3Dircadb dataset, the model demonstrated excellent performance by achieving a Dice Score of <strong>93.08 ​%</strong>, accuracy of 98.57 ​%, Jaccard Index of 87.12 ​%, a volumetric overlap error of 12.87 ​%, and a relative volume difference of 14.91 ​% on 128x128 size images. These results highlight the effectiveness of the proposed method. The primary goal of this research is to apply deep learning techniques for liver segmentation and assess the model's performance using segmentation metrics.</div></div>\",\"PeriodicalId\":100571,\"journal\":{\"name\":\"Gastroenterology & Endoscopy\",\"volume\":\"3 2\",\"pages\":\"Pages 93-104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gastroenterology & Endoscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949752325000081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gastroenterology & Endoscopy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949752325000081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从计算机断层扫描(CT)图像中分割肝脏是医学研究中的一项关键任务,特别是在使用深度学习方法时。大多数医生倾向于使用计算机断层扫描图像进行肝脏疾病的识别,因此自动肝脏分割起着决定性的作用。为了实现肝脏的自动分割,一些流行的架构(如改进的ResUNet)专门用于捕获多分辨率特征。在本研究中,我们提出了一种利用卷积层有效提取特征同时保持空间信息的自动系统。利用3Dircadb数据集开发了一种改进的残差UNet模型用于肝脏分割,该模型在128x128尺寸图像上的Dice Score为93.08%,准确率为98.57%,Jaccard Index为87.12%,体积重叠误差为12.87%,相对体积差为14.91%,表现出优异的性能。这些结果表明了所提方法的有效性。本研究的主要目标是将深度学习技术应用于肝脏分割,并使用分割指标评估模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated liver segmentation from CT images using modified ResUNet
The Segmentation of liver from computed tomography (CT) images is a critical task in medical research particularly when employing deep learning methods. Most doctors prefer to use Computed tomography images for liver disease identification hence automatic liver segmentation plays a decisive role. To perform automatic segmentation of liver popular architectures such as modified ResUNet are specifically designed to capture multi-resolution features. In this study we proposed an automatic system that utilizes convolutional layers to efficiently extract features while maintaining spatial information. A modified Residual UNet model was developed for liver segmentation using the 3Dircadb dataset, the model demonstrated excellent performance by achieving a Dice Score of 93.08 ​%, accuracy of 98.57 ​%, Jaccard Index of 87.12 ​%, a volumetric overlap error of 12.87 ​%, and a relative volume difference of 14.91 ​% on 128x128 size images. These results highlight the effectiveness of the proposed method. The primary goal of this research is to apply deep learning techniques for liver segmentation and assess the model's performance using segmentation metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信