tricin-lignin的存在与表征

IF 8.3 2区 生物学 Q1 PLANT SCIENCES
Wu Lan , Lydia Pui Ying Lam , Andy Lui , Clive Lo
{"title":"tricin-lignin的存在与表征","authors":"Wu Lan ,&nbsp;Lydia Pui Ying Lam ,&nbsp;Andy Lui ,&nbsp;Clive Lo","doi":"10.1016/j.pbi.2025.102703","DOIUrl":null,"url":null,"abstract":"<div><div>Tricin, a flavonoid, is a noncanonical lignin monomer present in grasses and other monocots, but rarely in dicots. This review explores the latest discovery of biosynthesis, transport, and distribution of tricin in plant cell walls, and discusses the missing gaps in this engaging topic. Tricin biosynthesis in grasses involves the phenylpropanoid and flavonoid pathways, with distinct enzymatic processes leading to tricin incorporation into lignin polymers. Methods for characterizing and quantifying tricin in lignin are also highlighted, including NMR spectroscopy and chromatographic techniques with discussion of challenges associated with its low abundance in plant tissues. The stability of tricin during biomass pretreatment processes is discussed, with findings indicating that acidic and alkaline conditions degrade tricin, while milder pretreatments preserve its structure. These insights underscore the potential of tricin in enhancing the functionality of lignin for sustainable bioprocessing, offering promising applications in pharmaceuticals, nutraceuticals, and biorefinery industries.</div></div>","PeriodicalId":11003,"journal":{"name":"Current opinion in plant biology","volume":"85 ","pages":"Article 102703"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Occurrence and characterization of tricin-lignin\",\"authors\":\"Wu Lan ,&nbsp;Lydia Pui Ying Lam ,&nbsp;Andy Lui ,&nbsp;Clive Lo\",\"doi\":\"10.1016/j.pbi.2025.102703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tricin, a flavonoid, is a noncanonical lignin monomer present in grasses and other monocots, but rarely in dicots. This review explores the latest discovery of biosynthesis, transport, and distribution of tricin in plant cell walls, and discusses the missing gaps in this engaging topic. Tricin biosynthesis in grasses involves the phenylpropanoid and flavonoid pathways, with distinct enzymatic processes leading to tricin incorporation into lignin polymers. Methods for characterizing and quantifying tricin in lignin are also highlighted, including NMR spectroscopy and chromatographic techniques with discussion of challenges associated with its low abundance in plant tissues. The stability of tricin during biomass pretreatment processes is discussed, with findings indicating that acidic and alkaline conditions degrade tricin, while milder pretreatments preserve its structure. These insights underscore the potential of tricin in enhancing the functionality of lignin for sustainable bioprocessing, offering promising applications in pharmaceuticals, nutraceuticals, and biorefinery industries.</div></div>\",\"PeriodicalId\":11003,\"journal\":{\"name\":\"Current opinion in plant biology\",\"volume\":\"85 \",\"pages\":\"Article 102703\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in plant biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369526625000172\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in plant biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369526625000172","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

Tricin是一种类黄酮,是一种非典型木质素单体,存在于禾本科和其他单子叶植物中,但很少存在于双子叶植物中。本文综述了tricin在植物细胞壁中的生物合成、运输和分布的最新发现,并讨论了这一引人注目的话题的缺失。草中的Tricin生物合成涉及苯丙素和类黄酮途径,不同的酶促过程导致Tricin结合到木质素聚合物中。还强调了木质素中tricin的表征和定量方法,包括核磁共振光谱和色谱技术,并讨论了其在植物组织中低丰度的挑战。讨论了生物质预处理过程中tricin的稳定性,结果表明酸性和碱性条件会降解tricin,而较温和的预处理会保留其结构。这些见解强调了tricin在增强木质素可持续生物加工功能方面的潜力,在制药、营养食品和生物炼制行业提供了有前途的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Occurrence and characterization of tricin-lignin
Tricin, a flavonoid, is a noncanonical lignin monomer present in grasses and other monocots, but rarely in dicots. This review explores the latest discovery of biosynthesis, transport, and distribution of tricin in plant cell walls, and discusses the missing gaps in this engaging topic. Tricin biosynthesis in grasses involves the phenylpropanoid and flavonoid pathways, with distinct enzymatic processes leading to tricin incorporation into lignin polymers. Methods for characterizing and quantifying tricin in lignin are also highlighted, including NMR spectroscopy and chromatographic techniques with discussion of challenges associated with its low abundance in plant tissues. The stability of tricin during biomass pretreatment processes is discussed, with findings indicating that acidic and alkaline conditions degrade tricin, while milder pretreatments preserve its structure. These insights underscore the potential of tricin in enhancing the functionality of lignin for sustainable bioprocessing, offering promising applications in pharmaceuticals, nutraceuticals, and biorefinery industries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current opinion in plant biology
Current opinion in plant biology 生物-植物科学
CiteScore
16.30
自引率
3.20%
发文量
131
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Plant Biology builds on Elsevier's reputation for excellence in scientific publishing and long-standing commitment to communicating high quality reproducible research. It is part of the Current Opinion and Research (CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy - of editorial excellence, high-impact, and global reach - to ensure they are a widely read resource that is integral to scientists' workflow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信