Y. Toual , S. Mouchou , B. Fakrach , A. Azouaoui , K. Bouslykhane , R. Masrour , A. Rezzouk , A. Hormatallah , N. Benzakour
{"title":"用于绿色能量收集的γ- nabea半heusler材料的光学和输运性质","authors":"Y. Toual , S. Mouchou , B. Fakrach , A. Azouaoui , K. Bouslykhane , R. Masrour , A. Rezzouk , A. Hormatallah , N. Benzakour","doi":"10.1016/j.physb.2025.417135","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the structural, dynamic, mechanical, thermodynamic, electronic, optical and transport properties of NaBeAs using first principles calculations based on density functional theory, coupled with the semi-classical Boltzmann transport theory. The results reveal that NaBeAs is stable structurally, dynamically, mechanically and thermodynamically in the <span><math><mi>γ</mi></math></span> phase but unstable in other phases <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>. The stabilities were assessed using phonon spectrum evaluations, compliance with elastic constant criteria, and calculations of the formation energy (<span><math><mrow><mi>Δ</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></math></span>). The electronic properties show a direct band gap of 1.51 eV, confirming the material’s semiconducting nature. NaBeAs exhibits unique optical features, such as a high refractive index, excellent external quantum efficiency (<span><math><msup><mrow><mi>η</mi></mrow><mrow><mi>O</mi><mi>p</mi><mi>t</mi></mrow></msup></math></span>= 58.84 %), low reflectivity in the visible spectrum ( R(<span><math><mi>ω</mi></math></span>) <span><math><mo><</mo></math></span> 50%), and strong ultraviolet absorption (<span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>ω</mi><mo>)</mo></mrow></mrow></math></span> <span><math><mrow><mo>≈</mo><mn>1</mn><mo>.</mo><mn>75</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>cm<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>). Temperature- and carrier concentration-dependent thermoelectric properties were also analyzed. A new n-type NaBeAs alloy has been discovered, showing a high figure of merit (zT) close to unity (zT <span><math><mo>∼</mo></math></span> 1) at 300 K and a thermoelectric power conversion efficiency of <span><math><msup><mrow><mi>η</mi></mrow><mrow><mi>T</mi><mi>E</mi></mrow></msup></math></span> = 16.58 % with a 700 K temperature gradient. The results present a theoretical basis for upcoming experimental studies of this alloy, emphasizing its potential for green energy harvesting applications.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"706 ","pages":"Article 417135"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical and transport proprieties of γ-NaBeAs half-Heusler material for green energy harvesting applications\",\"authors\":\"Y. Toual , S. Mouchou , B. Fakrach , A. Azouaoui , K. Bouslykhane , R. Masrour , A. Rezzouk , A. Hormatallah , N. Benzakour\",\"doi\":\"10.1016/j.physb.2025.417135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the structural, dynamic, mechanical, thermodynamic, electronic, optical and transport properties of NaBeAs using first principles calculations based on density functional theory, coupled with the semi-classical Boltzmann transport theory. The results reveal that NaBeAs is stable structurally, dynamically, mechanically and thermodynamically in the <span><math><mi>γ</mi></math></span> phase but unstable in other phases <span><math><mi>α</mi></math></span> and <span><math><mi>β</mi></math></span>. The stabilities were assessed using phonon spectrum evaluations, compliance with elastic constant criteria, and calculations of the formation energy (<span><math><mrow><mi>Δ</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></math></span>). The electronic properties show a direct band gap of 1.51 eV, confirming the material’s semiconducting nature. NaBeAs exhibits unique optical features, such as a high refractive index, excellent external quantum efficiency (<span><math><msup><mrow><mi>η</mi></mrow><mrow><mi>O</mi><mi>p</mi><mi>t</mi></mrow></msup></math></span>= 58.84 %), low reflectivity in the visible spectrum ( R(<span><math><mi>ω</mi></math></span>) <span><math><mo><</mo></math></span> 50%), and strong ultraviolet absorption (<span><math><mrow><msub><mrow><mi>α</mi></mrow><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>ω</mi><mo>)</mo></mrow></mrow></math></span> <span><math><mrow><mo>≈</mo><mn>1</mn><mo>.</mo><mn>75</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>cm<span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>). Temperature- and carrier concentration-dependent thermoelectric properties were also analyzed. A new n-type NaBeAs alloy has been discovered, showing a high figure of merit (zT) close to unity (zT <span><math><mo>∼</mo></math></span> 1) at 300 K and a thermoelectric power conversion efficiency of <span><math><msup><mrow><mi>η</mi></mrow><mrow><mi>T</mi><mi>E</mi></mrow></msup></math></span> = 16.58 % with a 700 K temperature gradient. The results present a theoretical basis for upcoming experimental studies of this alloy, emphasizing its potential for green energy harvesting applications.</div></div>\",\"PeriodicalId\":20116,\"journal\":{\"name\":\"Physica B-condensed Matter\",\"volume\":\"706 \",\"pages\":\"Article 417135\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica B-condensed Matter\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921452625002522\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625002522","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Optical and transport proprieties of γ-NaBeAs half-Heusler material for green energy harvesting applications
This study investigates the structural, dynamic, mechanical, thermodynamic, electronic, optical and transport properties of NaBeAs using first principles calculations based on density functional theory, coupled with the semi-classical Boltzmann transport theory. The results reveal that NaBeAs is stable structurally, dynamically, mechanically and thermodynamically in the phase but unstable in other phases and . The stabilities were assessed using phonon spectrum evaluations, compliance with elastic constant criteria, and calculations of the formation energy (). The electronic properties show a direct band gap of 1.51 eV, confirming the material’s semiconducting nature. NaBeAs exhibits unique optical features, such as a high refractive index, excellent external quantum efficiency (= 58.84 %), low reflectivity in the visible spectrum ( R() 50%), and strong ultraviolet absorption ( cm). Temperature- and carrier concentration-dependent thermoelectric properties were also analyzed. A new n-type NaBeAs alloy has been discovered, showing a high figure of merit (zT) close to unity (zT 1) at 300 K and a thermoelectric power conversion efficiency of = 16.58 % with a 700 K temperature gradient. The results present a theoretical basis for upcoming experimental studies of this alloy, emphasizing its potential for green energy harvesting applications.
期刊介绍:
Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work.
Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas:
-Magnetism
-Materials physics
-Nanostructures and nanomaterials
-Optics and optical materials
-Quantum materials
-Semiconductors
-Strongly correlated systems
-Superconductivity
-Surfaces and interfaces