翻转Toeplitz矩阵的谱性质及其计算应用

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Giovanni Barbarino , Sven-Erik Ekström , Carlo Garoni , David Meadon , Stefano Serra-Capizzano , Paris Vassalos
{"title":"翻转Toeplitz矩阵的谱性质及其计算应用","authors":"Giovanni Barbarino ,&nbsp;Sven-Erik Ekström ,&nbsp;Carlo Garoni ,&nbsp;David Meadon ,&nbsp;Stefano Serra-Capizzano ,&nbsp;Paris Vassalos","doi":"10.1016/j.amc.2025.129408","DOIUrl":null,"url":null,"abstract":"<div><div>We study the spectral properties of flipped Toeplitz matrices of the form <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> is the <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> Toeplitz matrix generated by the function <em>f</em> and <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> exchange (or flip) matrix having 1 on the main anti-diagonal and 0 elsewhere. In particular, under suitable assumptions on <em>f</em>, we establish an alternating sign relationship between the eigenvalues of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>, the eigenvalues of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>, and the quasi-uniform samples of <em>f</em>. Moreover, after fine-tuning a few known theorems on Toeplitz matrices, we use them to provide localization results for the eigenvalues of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>. Our study is motivated by the convergence analysis of the minimal residual (MINRES) method for the solution of real non-symmetric Toeplitz linear systems of the form <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mi>x</mi><mo>=</mo><mi>b</mi></math></span> after pre-multiplication of both sides by <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, as suggested by Pestana and Wathen <span><span>[26]</span></span>. A selection of numerical experiments is provided to illustrate the theoretical results and to show how to use the spectral localizations for predicting the MINRES performance on linear systems with coefficient matrix <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"499 ","pages":"Article 129408"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral properties of flipped Toeplitz matrices and computational applications\",\"authors\":\"Giovanni Barbarino ,&nbsp;Sven-Erik Ekström ,&nbsp;Carlo Garoni ,&nbsp;David Meadon ,&nbsp;Stefano Serra-Capizzano ,&nbsp;Paris Vassalos\",\"doi\":\"10.1016/j.amc.2025.129408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the spectral properties of flipped Toeplitz matrices of the form <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>, where <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span> is the <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> Toeplitz matrix generated by the function <em>f</em> and <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> exchange (or flip) matrix having 1 on the main anti-diagonal and 0 elsewhere. In particular, under suitable assumptions on <em>f</em>, we establish an alternating sign relationship between the eigenvalues of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>, the eigenvalues of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>, and the quasi-uniform samples of <em>f</em>. Moreover, after fine-tuning a few known theorems on Toeplitz matrices, we use them to provide localization results for the eigenvalues of <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>. Our study is motivated by the convergence analysis of the minimal residual (MINRES) method for the solution of real non-symmetric Toeplitz linear systems of the form <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo><mi>x</mi><mo>=</mo><mi>b</mi></math></span> after pre-multiplication of both sides by <span><math><msub><mrow><mi>Y</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, as suggested by Pestana and Wathen <span><span>[26]</span></span>. A selection of numerical experiments is provided to illustrate the theoretical results and to show how to use the spectral localizations for predicting the MINRES performance on linear systems with coefficient matrix <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>f</mi><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"499 \",\"pages\":\"Article 129408\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325001353\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001353","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了形式为Hn(f)=YnTn(f)的翻转Toeplitz矩阵的谱性质,其中Tn(f)是由函数f生成的n×n Toeplitz矩阵,Yn是n×n交换(或翻转)矩阵,主反对角线上为1,其他地方为0。特别地,在f的适当假设下,我们建立了Hn(f)的特征值、Tn(f)的特征值和f的准均匀样本之间的交替符号关系。并且,在对一些已知的Toeplitz矩阵定理进行微调之后,我们利用它们给出了Hn(f)的特征值的局部化结果。我们的研究是由Pestana和Wathen[26]提出的对形式为Tn(f)x=b的实非对称Toeplitz线性系统在两边预乘Yn后解的最小残差(MINRES)方法的收敛性分析推动的。通过一系列数值实验来说明理论结果,并展示了如何使用谱局域化来预测系数矩阵为Hn(f)的线性系统的MINRES性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral properties of flipped Toeplitz matrices and computational applications
We study the spectral properties of flipped Toeplitz matrices of the form Hn(f)=YnTn(f), where Tn(f) is the n×n Toeplitz matrix generated by the function f and Yn is the n×n exchange (or flip) matrix having 1 on the main anti-diagonal and 0 elsewhere. In particular, under suitable assumptions on f, we establish an alternating sign relationship between the eigenvalues of Hn(f), the eigenvalues of Tn(f), and the quasi-uniform samples of f. Moreover, after fine-tuning a few known theorems on Toeplitz matrices, we use them to provide localization results for the eigenvalues of Hn(f). Our study is motivated by the convergence analysis of the minimal residual (MINRES) method for the solution of real non-symmetric Toeplitz linear systems of the form Tn(f)x=b after pre-multiplication of both sides by Yn, as suggested by Pestana and Wathen [26]. A selection of numerical experiments is provided to illustrate the theoretical results and to show how to use the spectral localizations for predicting the MINRES performance on linear systems with coefficient matrix Hn(f).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信