低温含水层注入CO2时水合物扩展的微流体研究

Wei Yu , Muhammad Habiburrahman , Abdullah S. Sultan
{"title":"低温含水层注入CO2时水合物扩展的微流体研究","authors":"Wei Yu ,&nbsp;Muhammad Habiburrahman ,&nbsp;Abdullah S. Sultan","doi":"10.1016/j.ccst.2025.100401","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the interplay between hydrate formation and CO<sub>2</sub> injection is crucial for advancing submarine carbon sequestration, yet it remains underexplored. This study employs a high-pressure, low-temperature microfluidic system to investigate hydrate formation and propagation during CO<sub>2</sub> injection in porous media. This approach enables direct visualization of pore-scale and chip-scale hydrate formation dynamics across thousands of pores, offering critical insights into large-scale submarine CO<sub>2</sub> storage processes. We systematically assess the effects of injection rate, temperature (1.1–9.4 °C), and pressure (6.9–13.8 MPa) on hydrate formation kinetics. CO<sub>2</sub> injection reduces spatial stochasticity, with nucleation occurring primarily near the injection zone due to localized subcooling. Hydrate propagation follows a cascade mechanism over a broad saturation range (9–94%). Two key parameters—induction time and propagation velocity—are identified: induction time decreases with higher injection rates, while propagation velocity remains stable. Propagation velocity follows a power-law dependence on subcooling (exponent=2) but is diminished in porous media due to the effects of tortuosity and CO<sub>2</sub> saturation degree. Pressure variations have minimal influence on hydrate growth, confirming that subcooling is the dominant factor controlling hydrate formation kinetics. Our findings suggest potential injection strategies for CO<sub>2</sub> storage as hydrates in submarine environments.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"15 ","pages":"Article 100401"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microfluidic study of hydrate propagation during CO2 injection into cold aquifers\",\"authors\":\"Wei Yu ,&nbsp;Muhammad Habiburrahman ,&nbsp;Abdullah S. Sultan\",\"doi\":\"10.1016/j.ccst.2025.100401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the interplay between hydrate formation and CO<sub>2</sub> injection is crucial for advancing submarine carbon sequestration, yet it remains underexplored. This study employs a high-pressure, low-temperature microfluidic system to investigate hydrate formation and propagation during CO<sub>2</sub> injection in porous media. This approach enables direct visualization of pore-scale and chip-scale hydrate formation dynamics across thousands of pores, offering critical insights into large-scale submarine CO<sub>2</sub> storage processes. We systematically assess the effects of injection rate, temperature (1.1–9.4 °C), and pressure (6.9–13.8 MPa) on hydrate formation kinetics. CO<sub>2</sub> injection reduces spatial stochasticity, with nucleation occurring primarily near the injection zone due to localized subcooling. Hydrate propagation follows a cascade mechanism over a broad saturation range (9–94%). Two key parameters—induction time and propagation velocity—are identified: induction time decreases with higher injection rates, while propagation velocity remains stable. Propagation velocity follows a power-law dependence on subcooling (exponent=2) but is diminished in porous media due to the effects of tortuosity and CO<sub>2</sub> saturation degree. Pressure variations have minimal influence on hydrate growth, confirming that subcooling is the dominant factor controlling hydrate formation kinetics. Our findings suggest potential injection strategies for CO<sub>2</sub> storage as hydrates in submarine environments.</div></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"15 \",\"pages\":\"Article 100401\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656825000417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656825000417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解水合物形成与二氧化碳注入之间的相互作用对于推进海底碳封存至关重要,但这方面的研究仍未充分。本研究采用高压低温微流控系统研究了多孔介质中CO2注入过程中水合物的形成和传播。这种方法可以直接可视化数千个孔隙的孔隙尺度和芯片尺度的水合物形成动态,为大规模海底二氧化碳储存过程提供关键见解。我们系统地评估了注入速率、温度(1.1-9.4°C)和压力(6.9-13.8 MPa)对水合物形成动力学的影响。CO2注入降低了空间随机性,由于局部过冷,主要在注入区附近形成核。在较宽的饱和度范围内(9-94%),水合物的扩展遵循级联机制。确定了诱导时间和传播速度两个关键参数:随着注入速度的增加,诱导时间减少,而传播速度保持稳定。传播速度遵循幂律依赖于过冷(指数=2),但在多孔介质中,由于扭曲度和CO2饱和度的影响,传播速度降低。压力变化对水合物生长的影响最小,证实过冷是控制水合物形成动力学的主要因素。我们的研究结果提出了在海底环境中以水合物形式储存二氧化碳的潜在注入策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microfluidic study of hydrate propagation during CO2 injection into cold aquifers

Microfluidic study of hydrate propagation during CO2 injection into cold aquifers
Understanding the interplay between hydrate formation and CO2 injection is crucial for advancing submarine carbon sequestration, yet it remains underexplored. This study employs a high-pressure, low-temperature microfluidic system to investigate hydrate formation and propagation during CO2 injection in porous media. This approach enables direct visualization of pore-scale and chip-scale hydrate formation dynamics across thousands of pores, offering critical insights into large-scale submarine CO2 storage processes. We systematically assess the effects of injection rate, temperature (1.1–9.4 °C), and pressure (6.9–13.8 MPa) on hydrate formation kinetics. CO2 injection reduces spatial stochasticity, with nucleation occurring primarily near the injection zone due to localized subcooling. Hydrate propagation follows a cascade mechanism over a broad saturation range (9–94%). Two key parameters—induction time and propagation velocity—are identified: induction time decreases with higher injection rates, while propagation velocity remains stable. Propagation velocity follows a power-law dependence on subcooling (exponent=2) but is diminished in porous media due to the effects of tortuosity and CO2 saturation degree. Pressure variations have minimal influence on hydrate growth, confirming that subcooling is the dominant factor controlling hydrate formation kinetics. Our findings suggest potential injection strategies for CO2 storage as hydrates in submarine environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信