特征零场上的Seshadri常数及相关猜想

IF 0.9 3区 数学 Q2 MATHEMATICS, APPLIED
Ashima Bansal, Souradeep Majumder
{"title":"特征零场上的Seshadri常数及相关猜想","authors":"Ashima Bansal,&nbsp;Souradeep Majumder","doi":"10.1016/j.bulsci.2025.103617","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we study Seshadri constants over a base field <em>k</em>, which is of characteristic zero and not necessarily algebraically closed. We provide an upper bound for them and also discuss their behaviour under base change. Additionally, we examine Segre's Conjecture, Harbourne-Hirschowitz's Conjecture, and Nagata's Conjecture, discussing their interrelations in this setting.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"202 ","pages":"Article 103617"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seshadri constants and related conjectures over characteristic zero fields\",\"authors\":\"Ashima Bansal,&nbsp;Souradeep Majumder\",\"doi\":\"10.1016/j.bulsci.2025.103617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we study Seshadri constants over a base field <em>k</em>, which is of characteristic zero and not necessarily algebraically closed. We provide an upper bound for them and also discuss their behaviour under base change. Additionally, we examine Segre's Conjecture, Harbourne-Hirschowitz's Conjecture, and Nagata's Conjecture, discussing their interrelations in this setting.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"202 \",\"pages\":\"Article 103617\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725000430\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000430","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了特征为零且不一定是代数封闭的基域k上的Seshadri常数。给出了它们的上界,并讨论了它们在基数变化下的行为。此外,我们还考察了Segre猜想、Harbourne-Hirschowitz猜想和Nagata猜想,并在此背景下讨论了它们之间的相互关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seshadri constants and related conjectures over characteristic zero fields
In this article, we study Seshadri constants over a base field k, which is of characteristic zero and not necessarily algebraically closed. We provide an upper bound for them and also discuss their behaviour under base change. Additionally, we examine Segre's Conjecture, Harbourne-Hirschowitz's Conjecture, and Nagata's Conjecture, discussing their interrelations in this setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信