{"title":"大树宽的稀疏诱导子图","authors":"Édouard Bonnet","doi":"10.1016/j.jctb.2025.03.002","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by an induced counterpart of treewidth sparsifiers (i.e., sparse subgraphs keeping the treewidth large) provided by the celebrated Grid Minor theorem of Robertson and Seymour (1986) <span><span>[22]</span></span> or by a classic result of Chekuri and Chuzhoy (2015) <span><span>[5]</span></span>, we show that for any natural numbers <em>t</em> and <em>w</em>, and real <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span>, there is an integer <span><math><mi>W</mi><mo>:</mo><mo>=</mo><mi>W</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>w</mi><mo>,</mo><mi>ε</mi><mo>)</mo></math></span> such that every graph with treewidth at least <em>W</em> and no <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> subgraph admits a 2-connected <em>n</em>-vertex induced subgraph with treewidth at least <em>w</em> and at most <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo><mi>n</mi></math></span> edges. The induced subgraph is either a subdivided wall, or its line graph, or a spanning supergraph of a subdivided biclique. This in particular extends a result of Weißauer (2019) <span><span>[25]</span></span> that graphs of large treewidth have a large biclique subgraph or a long induced cycle.</div></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"173 ","pages":"Pages 184-203"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse induced subgraphs of large treewidth\",\"authors\":\"Édouard Bonnet\",\"doi\":\"10.1016/j.jctb.2025.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Motivated by an induced counterpart of treewidth sparsifiers (i.e., sparse subgraphs keeping the treewidth large) provided by the celebrated Grid Minor theorem of Robertson and Seymour (1986) <span><span>[22]</span></span> or by a classic result of Chekuri and Chuzhoy (2015) <span><span>[5]</span></span>, we show that for any natural numbers <em>t</em> and <em>w</em>, and real <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span>, there is an integer <span><math><mi>W</mi><mo>:</mo><mo>=</mo><mi>W</mi><mo>(</mo><mi>t</mi><mo>,</mo><mi>w</mi><mo>,</mo><mi>ε</mi><mo>)</mo></math></span> such that every graph with treewidth at least <em>W</em> and no <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span> subgraph admits a 2-connected <em>n</em>-vertex induced subgraph with treewidth at least <em>w</em> and at most <span><math><mo>(</mo><mn>1</mn><mo>+</mo><mi>ε</mi><mo>)</mo><mi>n</mi></math></span> edges. The induced subgraph is either a subdivided wall, or its line graph, or a spanning supergraph of a subdivided biclique. This in particular extends a result of Weißauer (2019) <span><span>[25]</span></span> that graphs of large treewidth have a large biclique subgraph or a long induced cycle.</div></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"173 \",\"pages\":\"Pages 184-203\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S009589562500019X\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009589562500019X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
受著名的Robertson和Seymour(1986)的网格小定理(Grid Minor theorem)提供的树宽稀疏子图(即保持树宽较大的稀疏子图)的诱导对偶,或Chekuri和chuchoy(2015)的经典结果([5])的激励,我们表明,对于任何自然数t和w,以及实数ε>;0,存在一个整数W:=W(t, W,ε),使得每个树宽至少W且没有Kt,t子图的图都存在一个树宽至少W且最多(1+ε)n条边的2连通n顶点诱导子图。诱导子图可以是细分壁面,也可以是细分壁面的线形图,也可以是细分壁面的生成超图。这特别扩展了Weißauer(2019)[25]的结果,即大树宽的图有一个大的双曲线子图或一个长诱导周期。
Motivated by an induced counterpart of treewidth sparsifiers (i.e., sparse subgraphs keeping the treewidth large) provided by the celebrated Grid Minor theorem of Robertson and Seymour (1986) [22] or by a classic result of Chekuri and Chuzhoy (2015) [5], we show that for any natural numbers t and w, and real , there is an integer such that every graph with treewidth at least W and no subgraph admits a 2-connected n-vertex induced subgraph with treewidth at least w and at most edges. The induced subgraph is either a subdivided wall, or its line graph, or a spanning supergraph of a subdivided biclique. This in particular extends a result of Weißauer (2019) [25] that graphs of large treewidth have a large biclique subgraph or a long induced cycle.
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.