Qichen He , Zhenyi Du , Honghao He , Jun Xu , Xu Jiang , Long Jiang , Kai Xu , Yi Wang , Sheng Su , Song Hu , Jun Xiang
{"title":"AAEMs对煤密度分离馏分热解的影响机理:基于热重分析、原位拉曼光谱和原位EPR技术的结合研究","authors":"Qichen He , Zhenyi Du , Honghao He , Jun Xu , Xu Jiang , Long Jiang , Kai Xu , Yi Wang , Sheng Su , Song Hu , Jun Xiang","doi":"10.1016/j.joei.2025.102071","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, in-situ Raman and in-situ Electron Paramagnetic Resonance (EPR) spectroscopy combining thermogravimetric analysis (TGA) were developed to investigate the effects of alkali and alkaline earth metallic species (AAEMs) on the evolution of Zhundong coal (a typical AAEMs-rich coal) density-separated fractions including <1.40 g/cm<sup>3</sup>, 1.40–1.45 g/cm<sup>3</sup>, 1.45–1.50 g/cm<sup>3</sup> and >1.50 g/cm<sup>3</sup> during pyrolysis. The inherent AAEMs in the Zhundong coal mainly exist as Na and Ca. For occurrence characteristics of AAEMs, the relative amount of ion-exchangeable AAEMs is close between density-separated fractions, and the water-soluble and HCl-soluble AAEMs mainly exist in the >1.50 g/cm<sup>3</sup> fraction. The pyrolysis weight loss and the maximum mass loss rate (R<sub>max</sub>) decrease with the increases of the fraction's density. The chemical structure and the occurrence characteristics of AAEMs of density-separated fractions have a combined effect on their pyrolysis characteristics. At the devolatilization stage of the pyrolysis, water-soluble AAEMs promote the release of active components, accelerate the formation of more stable bonds between AAEMs and char matrix and inhibit the release of the 1–2 aromatic rings in char especially for the <1.40 g/cm<sup>3</sup> fraction. In this stage, the formation of the cross-linking structures and 3–5 aromatic rings especially for the >1.50 g/cm<sup>3</sup> fraction, and the coupling of free radicals especially for the <1.40 g/cm<sup>3</sup> fraction are promoted. At the aromatization polymerization stage, the effects of water-soluble Na/K are obvious, especially for the <1.40 g/cm<sup>3</sup> fraction. The divalent AAEMs all can inhibit the condensation of aromatic rings and improve the reactivity of stable free radicals, especially for water-soluble divalent AAEMs in the >1.50 g/cm<sup>3</sup> fraction. Good correlations between pyrolysis reactivity and in-situ chemical structure were found and established. It was expected to direct the coal utilization based on integrated cascade stages.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"120 ","pages":"Article 102071"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence mechanism of AAEMs on the pyrolysis of coal density-separated fractions: Insights from combining TGA, in-situ Raman spectroscopy and in-situ EPR technique\",\"authors\":\"Qichen He , Zhenyi Du , Honghao He , Jun Xu , Xu Jiang , Long Jiang , Kai Xu , Yi Wang , Sheng Su , Song Hu , Jun Xiang\",\"doi\":\"10.1016/j.joei.2025.102071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, in-situ Raman and in-situ Electron Paramagnetic Resonance (EPR) spectroscopy combining thermogravimetric analysis (TGA) were developed to investigate the effects of alkali and alkaline earth metallic species (AAEMs) on the evolution of Zhundong coal (a typical AAEMs-rich coal) density-separated fractions including <1.40 g/cm<sup>3</sup>, 1.40–1.45 g/cm<sup>3</sup>, 1.45–1.50 g/cm<sup>3</sup> and >1.50 g/cm<sup>3</sup> during pyrolysis. The inherent AAEMs in the Zhundong coal mainly exist as Na and Ca. For occurrence characteristics of AAEMs, the relative amount of ion-exchangeable AAEMs is close between density-separated fractions, and the water-soluble and HCl-soluble AAEMs mainly exist in the >1.50 g/cm<sup>3</sup> fraction. The pyrolysis weight loss and the maximum mass loss rate (R<sub>max</sub>) decrease with the increases of the fraction's density. The chemical structure and the occurrence characteristics of AAEMs of density-separated fractions have a combined effect on their pyrolysis characteristics. At the devolatilization stage of the pyrolysis, water-soluble AAEMs promote the release of active components, accelerate the formation of more stable bonds between AAEMs and char matrix and inhibit the release of the 1–2 aromatic rings in char especially for the <1.40 g/cm<sup>3</sup> fraction. In this stage, the formation of the cross-linking structures and 3–5 aromatic rings especially for the >1.50 g/cm<sup>3</sup> fraction, and the coupling of free radicals especially for the <1.40 g/cm<sup>3</sup> fraction are promoted. At the aromatization polymerization stage, the effects of water-soluble Na/K are obvious, especially for the <1.40 g/cm<sup>3</sup> fraction. The divalent AAEMs all can inhibit the condensation of aromatic rings and improve the reactivity of stable free radicals, especially for water-soluble divalent AAEMs in the >1.50 g/cm<sup>3</sup> fraction. Good correlations between pyrolysis reactivity and in-situ chemical structure were found and established. It was expected to direct the coal utilization based on integrated cascade stages.</div></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":\"120 \",\"pages\":\"Article 102071\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967125000996\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967125000996","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Influence mechanism of AAEMs on the pyrolysis of coal density-separated fractions: Insights from combining TGA, in-situ Raman spectroscopy and in-situ EPR technique
In this study, in-situ Raman and in-situ Electron Paramagnetic Resonance (EPR) spectroscopy combining thermogravimetric analysis (TGA) were developed to investigate the effects of alkali and alkaline earth metallic species (AAEMs) on the evolution of Zhundong coal (a typical AAEMs-rich coal) density-separated fractions including <1.40 g/cm3, 1.40–1.45 g/cm3, 1.45–1.50 g/cm3 and >1.50 g/cm3 during pyrolysis. The inherent AAEMs in the Zhundong coal mainly exist as Na and Ca. For occurrence characteristics of AAEMs, the relative amount of ion-exchangeable AAEMs is close between density-separated fractions, and the water-soluble and HCl-soluble AAEMs mainly exist in the >1.50 g/cm3 fraction. The pyrolysis weight loss and the maximum mass loss rate (Rmax) decrease with the increases of the fraction's density. The chemical structure and the occurrence characteristics of AAEMs of density-separated fractions have a combined effect on their pyrolysis characteristics. At the devolatilization stage of the pyrolysis, water-soluble AAEMs promote the release of active components, accelerate the formation of more stable bonds between AAEMs and char matrix and inhibit the release of the 1–2 aromatic rings in char especially for the <1.40 g/cm3 fraction. In this stage, the formation of the cross-linking structures and 3–5 aromatic rings especially for the >1.50 g/cm3 fraction, and the coupling of free radicals especially for the <1.40 g/cm3 fraction are promoted. At the aromatization polymerization stage, the effects of water-soluble Na/K are obvious, especially for the <1.40 g/cm3 fraction. The divalent AAEMs all can inhibit the condensation of aromatic rings and improve the reactivity of stable free radicals, especially for water-soluble divalent AAEMs in the >1.50 g/cm3 fraction. Good correlations between pyrolysis reactivity and in-situ chemical structure were found and established. It was expected to direct the coal utilization based on integrated cascade stages.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.