红细胞硬度的高通量和无标记筛选:镰状细胞病的研究

IF 10.61 Q3 Biochemistry, Genetics and Molecular Biology
Saurabh Kaushik , Arkabrata Mishra , Roshan Ross , Sweta Srivastava , Cecil R. Ross , Gautam V. Soni
{"title":"红细胞硬度的高通量和无标记筛选:镰状细胞病的研究","authors":"Saurabh Kaushik ,&nbsp;Arkabrata Mishra ,&nbsp;Roshan Ross ,&nbsp;Sweta Srivastava ,&nbsp;Cecil R. Ross ,&nbsp;Gautam V. Soni","doi":"10.1016/j.biosx.2025.100616","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the morphological and mechanical changes in cells are important for diagnostic and treatment methods in various diseases. In sickle cell disease (SCD), the mutated hemoglobin (HbS) aggregates inside the red blood cells (RBCs), making them rigid and, in extreme cases, sickle-shaped, resulting in anemia, episodes of pain, and multiple organ damage. Existing techniques are too costly and insensitive since the effect of the HbS gene (heterozygous and homozygous) is variable both in prevalence and clinical manifestations. In this work, we present a label-free, cost-effective, high-throughput electro-fluidic technique to study changes in the mechanical and morphological characteristics of RBCs. We validate our device by quantitatively comparing the mechanical properties of RBCs as a function of stiffness-altering drug (Latrunculin-A) with measurements using AFM. We demonstrate the on-site application of our system by screening SCD patients based on their RBC stiffness changes. The signatures of patient-specific heterogeneity in the RBC mechanical properties may help in monitoring clinical variability and identification of high-risk patients along with targeted therapies. The versatility of our measurements opens the whole cell stiffness as a preliminary screening biomarker in other haematological conditions, tumor cell identification, in veterinary sciences as well as in evaluating hydrogel technologies.</div></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"24 ","pages":"Article 100616"},"PeriodicalIF":10.6100,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput and label-free screening of red blood cell stiffness: A study of sickle cell disease\",\"authors\":\"Saurabh Kaushik ,&nbsp;Arkabrata Mishra ,&nbsp;Roshan Ross ,&nbsp;Sweta Srivastava ,&nbsp;Cecil R. Ross ,&nbsp;Gautam V. Soni\",\"doi\":\"10.1016/j.biosx.2025.100616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the morphological and mechanical changes in cells are important for diagnostic and treatment methods in various diseases. In sickle cell disease (SCD), the mutated hemoglobin (HbS) aggregates inside the red blood cells (RBCs), making them rigid and, in extreme cases, sickle-shaped, resulting in anemia, episodes of pain, and multiple organ damage. Existing techniques are too costly and insensitive since the effect of the HbS gene (heterozygous and homozygous) is variable both in prevalence and clinical manifestations. In this work, we present a label-free, cost-effective, high-throughput electro-fluidic technique to study changes in the mechanical and morphological characteristics of RBCs. We validate our device by quantitatively comparing the mechanical properties of RBCs as a function of stiffness-altering drug (Latrunculin-A) with measurements using AFM. We demonstrate the on-site application of our system by screening SCD patients based on their RBC stiffness changes. The signatures of patient-specific heterogeneity in the RBC mechanical properties may help in monitoring clinical variability and identification of high-risk patients along with targeted therapies. The versatility of our measurements opens the whole cell stiffness as a preliminary screening biomarker in other haematological conditions, tumor cell identification, in veterinary sciences as well as in evaluating hydrogel technologies.</div></div>\",\"PeriodicalId\":260,\"journal\":{\"name\":\"Biosensors and Bioelectronics: X\",\"volume\":\"24 \",\"pages\":\"Article 100616\"},\"PeriodicalIF\":10.6100,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors and Bioelectronics: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590137025000433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137025000433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

了解细胞的形态和力学变化对各种疾病的诊断和治疗方法具有重要意义。在镰状细胞病(SCD)中,突变的血红蛋白(HbS)聚集在红细胞(rbc)内,使它们变得坚硬,在极端情况下,呈镰状,导致贫血、疼痛发作和多器官损伤。由于HbS基因(杂合子和纯合子)的影响在患病率和临床表现上都是可变的,现有的技术过于昂贵且不敏感。在这项工作中,我们提出了一种无标签、低成本、高通量的电流体技术来研究红细胞的力学和形态特征的变化。我们通过定量比较红细胞的力学特性作为刚度改变药物(Latrunculin-A)的函数与使用AFM测量来验证我们的设备。我们通过筛选SCD患者的RBC硬度变化来展示我们的系统的现场应用。红细胞力学特性的患者特异性异质性特征可能有助于监测临床变异性和识别高风险患者以及靶向治疗。我们测量的多功能性打开了整个细胞刚度作为其他血液学条件,肿瘤细胞鉴定,兽医科学以及评估水凝胶技术的初步筛选生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-throughput and label-free screening of red blood cell stiffness: A study of sickle cell disease
Understanding the morphological and mechanical changes in cells are important for diagnostic and treatment methods in various diseases. In sickle cell disease (SCD), the mutated hemoglobin (HbS) aggregates inside the red blood cells (RBCs), making them rigid and, in extreme cases, sickle-shaped, resulting in anemia, episodes of pain, and multiple organ damage. Existing techniques are too costly and insensitive since the effect of the HbS gene (heterozygous and homozygous) is variable both in prevalence and clinical manifestations. In this work, we present a label-free, cost-effective, high-throughput electro-fluidic technique to study changes in the mechanical and morphological characteristics of RBCs. We validate our device by quantitatively comparing the mechanical properties of RBCs as a function of stiffness-altering drug (Latrunculin-A) with measurements using AFM. We demonstrate the on-site application of our system by screening SCD patients based on their RBC stiffness changes. The signatures of patient-specific heterogeneity in the RBC mechanical properties may help in monitoring clinical variability and identification of high-risk patients along with targeted therapies. The versatility of our measurements opens the whole cell stiffness as a preliminary screening biomarker in other haematological conditions, tumor cell identification, in veterinary sciences as well as in evaluating hydrogel technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors and Bioelectronics: X
Biosensors and Bioelectronics: X Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
4.60
自引率
0.00%
发文量
166
审稿时长
54 days
期刊介绍: Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信