John Henry Rakini Chanderasekaran , Subramanian Nithiyanantham
{"title":"3,6-二羟基吡啶的光谱、理化和热力学研究-密度泛函理论(DFT)","authors":"John Henry Rakini Chanderasekaran , Subramanian Nithiyanantham","doi":"10.1016/j.nxmate.2025.100606","DOIUrl":null,"url":null,"abstract":"<div><div>The use of molecular spectroscopy has grown significantly as a method for analysis, examine the spectra of atoms and molecules provides a thorough understanding of their composition. To grasp their structure, it's essential to have a solid grasp of the forces holding them together. A comprehensive theoretical and experimental investigation into the optimized shape and vibrational frequencies of 3,6-dihydroxypyridazine (DHP) was carried out employing the DFT/B3LYP method with a 6–31 +G level of theory. For these calculations, we utilized the Gaussian 09w program, which was backed by Gauss View 5.08 software. In this study documented the FT-IR and FT-Raman spectra for the chosen system. Further, determined Mulliken population analysis, Molecular electrostatic potential (MEP), HOMO-LUMO energy gap, and Reduced density gradient of the title compound were also analyzed. Finally, it is explored the global reactivity descriptors and the temperature-dependent thermodynamic properties of the compound using the B3LYP/6–31 +G method.</div></div>","PeriodicalId":100958,"journal":{"name":"Next Materials","volume":"8 ","pages":"Article 100606"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectroscopic, physico-chemical and thermodynamic investigatations on 3,6-dihydroxypyridazine – Density functional theory (DFT)\",\"authors\":\"John Henry Rakini Chanderasekaran , Subramanian Nithiyanantham\",\"doi\":\"10.1016/j.nxmate.2025.100606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The use of molecular spectroscopy has grown significantly as a method for analysis, examine the spectra of atoms and molecules provides a thorough understanding of their composition. To grasp their structure, it's essential to have a solid grasp of the forces holding them together. A comprehensive theoretical and experimental investigation into the optimized shape and vibrational frequencies of 3,6-dihydroxypyridazine (DHP) was carried out employing the DFT/B3LYP method with a 6–31 +G level of theory. For these calculations, we utilized the Gaussian 09w program, which was backed by Gauss View 5.08 software. In this study documented the FT-IR and FT-Raman spectra for the chosen system. Further, determined Mulliken population analysis, Molecular electrostatic potential (MEP), HOMO-LUMO energy gap, and Reduced density gradient of the title compound were also analyzed. Finally, it is explored the global reactivity descriptors and the temperature-dependent thermodynamic properties of the compound using the B3LYP/6–31 +G method.</div></div>\",\"PeriodicalId\":100958,\"journal\":{\"name\":\"Next Materials\",\"volume\":\"8 \",\"pages\":\"Article 100606\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949822825001248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949822825001248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Spectroscopic, physico-chemical and thermodynamic investigatations on 3,6-dihydroxypyridazine – Density functional theory (DFT)
The use of molecular spectroscopy has grown significantly as a method for analysis, examine the spectra of atoms and molecules provides a thorough understanding of their composition. To grasp their structure, it's essential to have a solid grasp of the forces holding them together. A comprehensive theoretical and experimental investigation into the optimized shape and vibrational frequencies of 3,6-dihydroxypyridazine (DHP) was carried out employing the DFT/B3LYP method with a 6–31 +G level of theory. For these calculations, we utilized the Gaussian 09w program, which was backed by Gauss View 5.08 software. In this study documented the FT-IR and FT-Raman spectra for the chosen system. Further, determined Mulliken population analysis, Molecular electrostatic potential (MEP), HOMO-LUMO energy gap, and Reduced density gradient of the title compound were also analyzed. Finally, it is explored the global reactivity descriptors and the temperature-dependent thermodynamic properties of the compound using the B3LYP/6–31 +G method.