脊柱植入物磨损颗粒:产生、表征、生物影响和未来考虑

IF 4.6 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Renata Ganko , Aswini Madhavan , Waeel Hamouda , Sathish Muthu , Amit Jain , S. Tim Yoon , Hiba El-Rozz , Divya Cyril , Moreica Pabbruwe , Joanne L. Tipper , Javad Tavakoli
{"title":"脊柱植入物磨损颗粒:产生、表征、生物影响和未来考虑","authors":"Renata Ganko ,&nbsp;Aswini Madhavan ,&nbsp;Waeel Hamouda ,&nbsp;Sathish Muthu ,&nbsp;Amit Jain ,&nbsp;S. Tim Yoon ,&nbsp;Hiba El-Rozz ,&nbsp;Divya Cyril ,&nbsp;Moreica Pabbruwe ,&nbsp;Joanne L. Tipper ,&nbsp;Javad Tavakoli","doi":"10.1016/j.isci.2025.112193","DOIUrl":null,"url":null,"abstract":"<div><div>The generation of wear debris from orthopedic implants is a known cause of implant failure, particularly in joint replacements. While much research has focused on wear particles from knee and hip implants, spinal implants, such as total disc replacements (TDRs), have received less attention despite their increasing clinical use. Spinal implants face unique biomechanical challenges, including a wider range of motion and higher loads, leading to complex tissue interactions. Studies reveal that TDR wear particles, though similar in size to those from knee implants, cause a stronger immune response, with more macrophages and giant cells found in the surrounding tissue. This may explain the high revision rates seen in spinal surgeries, with some interventions failing in over 30% of cases within 10 years. The younger population undergoing spinal surgery, combined with the productivity losses associated with implant failure, underscores the need for greater understanding. This review discusses recent research on the generation, characterization, and biological impacts of spinal implant wear debris. It draws on retrieval analysis, wear simulation, <em>in vivo</em> models, and a survey conducted with the AO Spine Knowledge Forum Degenerative to assess current clinical practices and highlight gaps in knowledge. Additionally, this critical review explores future strategies to reduce the biological impact of wear particles and improve the safety and longevity of spinal implants through better therapeutics and design innovations. By combining literature and clinical insights, this paper aims to guide future research in addressing the complexities of spinal implant wear and its biological consequences.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 4","pages":"Article 112193"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spinal implant wear particles: Generation, characterization, biological impacts, and future considerations\",\"authors\":\"Renata Ganko ,&nbsp;Aswini Madhavan ,&nbsp;Waeel Hamouda ,&nbsp;Sathish Muthu ,&nbsp;Amit Jain ,&nbsp;S. Tim Yoon ,&nbsp;Hiba El-Rozz ,&nbsp;Divya Cyril ,&nbsp;Moreica Pabbruwe ,&nbsp;Joanne L. Tipper ,&nbsp;Javad Tavakoli\",\"doi\":\"10.1016/j.isci.2025.112193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The generation of wear debris from orthopedic implants is a known cause of implant failure, particularly in joint replacements. While much research has focused on wear particles from knee and hip implants, spinal implants, such as total disc replacements (TDRs), have received less attention despite their increasing clinical use. Spinal implants face unique biomechanical challenges, including a wider range of motion and higher loads, leading to complex tissue interactions. Studies reveal that TDR wear particles, though similar in size to those from knee implants, cause a stronger immune response, with more macrophages and giant cells found in the surrounding tissue. This may explain the high revision rates seen in spinal surgeries, with some interventions failing in over 30% of cases within 10 years. The younger population undergoing spinal surgery, combined with the productivity losses associated with implant failure, underscores the need for greater understanding. This review discusses recent research on the generation, characterization, and biological impacts of spinal implant wear debris. It draws on retrieval analysis, wear simulation, <em>in vivo</em> models, and a survey conducted with the AO Spine Knowledge Forum Degenerative to assess current clinical practices and highlight gaps in knowledge. Additionally, this critical review explores future strategies to reduce the biological impact of wear particles and improve the safety and longevity of spinal implants through better therapeutics and design innovations. By combining literature and clinical insights, this paper aims to guide future research in addressing the complexities of spinal implant wear and its biological consequences.</div></div>\",\"PeriodicalId\":342,\"journal\":{\"name\":\"iScience\",\"volume\":\"28 4\",\"pages\":\"Article 112193\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589004225004547\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004225004547","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

骨科植入物产生磨损碎片是导致植入物失效的已知原因,特别是在关节置换术中。虽然许多研究都集中在膝关节和髋关节植入物的磨损颗粒上,但脊柱植入物,如全椎间盘置换术(tdr),尽管临床应用越来越多,但受到的关注却很少。脊柱植入物面临着独特的生物力学挑战,包括更大范围的运动和更高的负荷,导致复杂的组织相互作用。研究表明,TDR磨损颗粒虽然大小与膝关节植入物相似,但会引起更强的免疫反应,在周围组织中发现更多的巨噬细胞和巨细胞。这也许可以解释脊柱手术的高翻修率,一些干预措施在10年内失败的病例超过30%。接受脊柱手术的年轻人群,加上与植入物失败相关的生产力损失,强调了更多了解的必要性。本文综述了近期关于脊柱植入物磨损碎片的产生、特征和生物学影响的研究。它利用检索分析、磨损模拟、体内模型和AO脊柱知识论坛退行性调查来评估当前的临床实践并突出知识差距。此外,这篇重要的综述探讨了未来的策略,以减少磨损颗粒的生物影响,并通过更好的治疗和设计创新来提高脊柱植入物的安全性和寿命。通过结合文献和临床见解,本文旨在指导未来研究解决脊柱植入物磨损的复杂性及其生物学后果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Spinal implant wear particles: Generation, characterization, biological impacts, and future considerations

Spinal implant wear particles: Generation, characterization, biological impacts, and future considerations
The generation of wear debris from orthopedic implants is a known cause of implant failure, particularly in joint replacements. While much research has focused on wear particles from knee and hip implants, spinal implants, such as total disc replacements (TDRs), have received less attention despite their increasing clinical use. Spinal implants face unique biomechanical challenges, including a wider range of motion and higher loads, leading to complex tissue interactions. Studies reveal that TDR wear particles, though similar in size to those from knee implants, cause a stronger immune response, with more macrophages and giant cells found in the surrounding tissue. This may explain the high revision rates seen in spinal surgeries, with some interventions failing in over 30% of cases within 10 years. The younger population undergoing spinal surgery, combined with the productivity losses associated with implant failure, underscores the need for greater understanding. This review discusses recent research on the generation, characterization, and biological impacts of spinal implant wear debris. It draws on retrieval analysis, wear simulation, in vivo models, and a survey conducted with the AO Spine Knowledge Forum Degenerative to assess current clinical practices and highlight gaps in knowledge. Additionally, this critical review explores future strategies to reduce the biological impact of wear particles and improve the safety and longevity of spinal implants through better therapeutics and design innovations. By combining literature and clinical insights, this paper aims to guide future research in addressing the complexities of spinal implant wear and its biological consequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
iScience
iScience Multidisciplinary-Multidisciplinary
CiteScore
7.20
自引率
1.70%
发文量
1972
审稿时长
6 weeks
期刊介绍: Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results. We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信