Tyshkevich的图分解和单图的区分数

IF 0.7 3区 数学 Q2 MATHEMATICS
Christine T. Cheng
{"title":"Tyshkevich的图分解和单图的区分数","authors":"Christine T. Cheng","doi":"10.1016/j.disc.2025.114492","DOIUrl":null,"url":null,"abstract":"<div><div>A <em>c</em>-labeling <span><math><mi>ϕ</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>c</mi><mo>}</mo></math></span> of graph <em>G</em> is <em>distinguishing</em> if, for every non-trivial automorphism <em>π</em> of <em>G</em>, there is some vertex <em>v</em> so that <span><math><mi>ϕ</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>≠</mo><mi>ϕ</mi><mo>(</mo><mi>π</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>)</mo></math></span>. The <em>distinguishing number of G</em>, <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the smallest <em>c</em> such that <em>G</em> has a distinguishing <em>c</em>-labeling.</div><div>We consider a compact version of Tyshkevich's graph decomposition theorem where trivial components are maximally combined to form a complete graph or a graph of isolated vertices. Suppose the compact canonical decomposition of <em>G</em> is <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>∘</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∘</mo><mo>⋯</mo><mo>∘</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∘</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. We prove that <em>ϕ</em> is a distinguishing labeling of <em>G</em> if and only if <em>ϕ</em> is a distinguishing labeling of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> when restricted to <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi></math></span>. Thus, <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>D</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>,</mo><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span>. We then present an algorithm that computes the distinguishing number of a unigraph in linear time.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 8","pages":"Article 114492"},"PeriodicalIF":0.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tyshkevich's graph decomposition and the distinguishing numbers of unigraphs\",\"authors\":\"Christine T. Cheng\",\"doi\":\"10.1016/j.disc.2025.114492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A <em>c</em>-labeling <span><math><mi>ϕ</mi><mo>:</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>→</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>c</mi><mo>}</mo></math></span> of graph <em>G</em> is <em>distinguishing</em> if, for every non-trivial automorphism <em>π</em> of <em>G</em>, there is some vertex <em>v</em> so that <span><math><mi>ϕ</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>≠</mo><mi>ϕ</mi><mo>(</mo><mi>π</mi><mo>(</mo><mi>v</mi><mo>)</mo><mo>)</mo></math></span>. The <em>distinguishing number of G</em>, <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, is the smallest <em>c</em> such that <em>G</em> has a distinguishing <em>c</em>-labeling.</div><div>We consider a compact version of Tyshkevich's graph decomposition theorem where trivial components are maximally combined to form a complete graph or a graph of isolated vertices. Suppose the compact canonical decomposition of <em>G</em> is <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>∘</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∘</mo><mo>⋯</mo><mo>∘</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∘</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>. We prove that <em>ϕ</em> is a distinguishing labeling of <em>G</em> if and only if <em>ϕ</em> is a distinguishing labeling of <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> when restricted to <span><math><mi>V</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></math></span> for <span><math><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi></math></span>. Thus, <span><math><mi>D</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>=</mo><mi>max</mi><mo>⁡</mo><mo>{</mo><mi>D</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>,</mo><mi>i</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></math></span>. We then present an algorithm that computes the distinguishing number of a unigraph in linear time.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":\"348 8\",\"pages\":\"Article 114492\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X25001001\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X25001001","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图G的一个c标记φ:V(G)→{1,2,…,c}是为了区分对于G的每一个非平凡自同构π,是否存在某个顶点V使得φ (V)≠φ (π(V))。G的区分数D(G)是最小的c,使得G有一个区分的c标记。我们考虑了一个紧凑版的Tyshkevich图分解定理,其中平凡分量被极大地组合以形成完全图或孤立顶点图。假设G的紧形正则分解是Gk°Gk−1°⋯G1°G0。我们证明了当且仅当当i=0,…,k时,当φ被限制为V(Gi)时,φ是Gi的一个可分辨标记。因此,D (G) = max⁡{D (Gi), i = 0,…,k}。然后,我们提出了一种在线性时间内计算单图的区分数的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tyshkevich's graph decomposition and the distinguishing numbers of unigraphs
A c-labeling ϕ:V(G){1,2,,c} of graph G is distinguishing if, for every non-trivial automorphism π of G, there is some vertex v so that ϕ(v)ϕ(π(v)). The distinguishing number of G, D(G), is the smallest c such that G has a distinguishing c-labeling.
We consider a compact version of Tyshkevich's graph decomposition theorem where trivial components are maximally combined to form a complete graph or a graph of isolated vertices. Suppose the compact canonical decomposition of G is GkGk1G1G0. We prove that ϕ is a distinguishing labeling of G if and only if ϕ is a distinguishing labeling of Gi when restricted to V(Gi) for i=0,,k. Thus, D(G)=max{D(Gi),i=0,,k}. We then present an algorithm that computes the distinguishing number of a unigraph in linear time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信