结构矩阵代数Jordan嵌入的Petek-Šemrl守恒定理的推广

IF 1.2 3区 数学 Q1 MATHEMATICS
Ilja Gogić, Mateo Tomašević
{"title":"结构矩阵代数Jordan嵌入的Petek-Šemrl守恒定理的推广","authors":"Ilja Gogić,&nbsp;Mateo Tomašević","doi":"10.1016/j.jmaa.2025.129497","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the algebra of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> complex matrices and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊆</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> the corresponding upper-triangular subalgebra. In their influential work, Petek and Šemrl characterize Jordan automorphisms of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, when <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, as (injective in the case of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) continuous commutativity and spectrum preserving maps <span><math><mi>ϕ</mi><mo>:</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><mi>ϕ</mi><mo>:</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Recently, in a joint work with Petek, the authors extended this characterization to the maps <span><math><mi>ϕ</mi><mo>:</mo><mi>A</mi><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, where <span><math><mi>A</mi></math></span> is an arbitrary subalgebra of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> that contains <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. In particular, any such map <em>ϕ</em> is a Jordan embedding and hence of the form <span><math><mi>ϕ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mi>T</mi><mi>X</mi><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> or <span><math><mi>ϕ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mi>T</mi><msup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msup><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, for some invertible matrix <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</div><div>In this paper we further extend the aforementioned results in the context of structural matrix algebras (SMAs), i.e. subalgebras <span><math><mi>A</mi></math></span> of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> that contain all diagonal matrices. More precisely, we provide both a necessary and sufficient condition for an SMA <span><math><mi>A</mi><mo>⊆</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> such that any injective continuous commutativity and spectrum preserving map <span><math><mi>ϕ</mi><mo>:</mo><mi>A</mi><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is necessarily a Jordan embedding. In contrast to the previous cases, such maps <em>ϕ</em> no longer need to be multiplicative/antimultiplicative, nor rank-one preservers.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129497"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extension of Petek-Šemrl preserver theorems for Jordan embeddings of structural matrix algebras\",\"authors\":\"Ilja Gogić,&nbsp;Mateo Tomašević\",\"doi\":\"10.1016/j.jmaa.2025.129497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the algebra of <span><math><mi>n</mi><mo>×</mo><mi>n</mi></math></span> complex matrices and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⊆</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> the corresponding upper-triangular subalgebra. In their influential work, Petek and Šemrl characterize Jordan automorphisms of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, when <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, as (injective in the case of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>) continuous commutativity and spectrum preserving maps <span><math><mi>ϕ</mi><mo>:</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and <span><math><mi>ϕ</mi><mo>:</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Recently, in a joint work with Petek, the authors extended this characterization to the maps <span><math><mi>ϕ</mi><mo>:</mo><mi>A</mi><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, where <span><math><mi>A</mi></math></span> is an arbitrary subalgebra of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> that contains <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. In particular, any such map <em>ϕ</em> is a Jordan embedding and hence of the form <span><math><mi>ϕ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mi>T</mi><mi>X</mi><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> or <span><math><mi>ϕ</mi><mo>(</mo><mi>X</mi><mo>)</mo><mo>=</mo><mi>T</mi><msup><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msup><msup><mrow><mi>T</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>, for some invertible matrix <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>.</div><div>In this paper we further extend the aforementioned results in the context of structural matrix algebras (SMAs), i.e. subalgebras <span><math><mi>A</mi></math></span> of <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> that contain all diagonal matrices. More precisely, we provide both a necessary and sufficient condition for an SMA <span><math><mi>A</mi><mo>⊆</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> such that any injective continuous commutativity and spectrum preserving map <span><math><mi>ϕ</mi><mo>:</mo><mi>A</mi><mo>→</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is necessarily a Jordan embedding. In contrast to the previous cases, such maps <em>ϕ</em> no longer need to be multiplicative/antimultiplicative, nor rank-one preservers.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"549 1\",\"pages\":\"Article 129497\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25002781\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002781","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设Mn为n×n复矩阵的代数,Tn≥Mn为相应的上三角子代数。在他们有影响力的工作中,Petek和Šemrl将n≥3时Mn和Tn的Jordan自同构描述为(在Tn的情况下是内射)连续交换性和保谱映射φ:Mn→Mn和φ:Tn→Tn。最近,在与Petek的联合工作中,作者将这一表征推广到映射φ: a→Mn,其中a是包含Tn的Mn的任意子代数。特别地,对于某些可逆矩阵T∈Mn,任何这样的映射φ都是Jordan嵌入,因此具有φ (X)=TXT−1或φ (X)=TXtT−1的形式。在本文中,我们在结构矩阵代数(SMAs)的背景下进一步推广了上述结果,即Mn的子代数A包含所有对角矩阵。更确切地说,我们提供了SMA a≥Mn的一个充要条件,使得任意内射连续交换性和保谱映射φ: a→Mn必然是Jordan嵌入。与之前的情况相反,这种映射φ不再需要是乘法/反乘法的,也不是排名第一的保存器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An extension of Petek-Šemrl preserver theorems for Jordan embeddings of structural matrix algebras
Let Mn be the algebra of n×n complex matrices and TnMn the corresponding upper-triangular subalgebra. In their influential work, Petek and Šemrl characterize Jordan automorphisms of Mn and Tn, when n3, as (injective in the case of Tn) continuous commutativity and spectrum preserving maps ϕ:MnMn and ϕ:TnTn. Recently, in a joint work with Petek, the authors extended this characterization to the maps ϕ:AMn, where A is an arbitrary subalgebra of Mn that contains Tn. In particular, any such map ϕ is a Jordan embedding and hence of the form ϕ(X)=TXT1 or ϕ(X)=TXtT1, for some invertible matrix TMn.
In this paper we further extend the aforementioned results in the context of structural matrix algebras (SMAs), i.e. subalgebras A of Mn that contain all diagonal matrices. More precisely, we provide both a necessary and sufficient condition for an SMA AMn such that any injective continuous commutativity and spectrum preserving map ϕ:AMn is necessarily a Jordan embedding. In contrast to the previous cases, such maps ϕ no longer need to be multiplicative/antimultiplicative, nor rank-one preservers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信