Quyuan Wang , Pengyang Chen , Jiadi Liu , Ying Wang , Zhiwei Guo
{"title":"Investment-driven budget allocation and dynamic pricing strategies in edge cache network","authors":"Quyuan Wang , Pengyang Chen , Jiadi Liu , Ying Wang , Zhiwei Guo","doi":"10.1016/j.pmcj.2025.102040","DOIUrl":null,"url":null,"abstract":"<div><div>Edge Caching is an application with great commercial potential in accelerating content acquisition by near-client content caching. To provide high-quality services for customers, it is indispensable for content providers to purchase or rent sufficient wireless channels and cache storage resources from edge suppliers. However, few work has investigated how to allocate limited budget to the appropriate resources in an economically way for caching at a network edge. In this paper, we construct a Fisher cache market to tackle the budget allocation problem and the price adjustment problem in edge caching by using the portfolio approach. In the budget allocation problem, we utilize the Iso-cost line and threshold settings to narrow search space and propose an algorithm termed as Gradient descent based Portfolio Search (GBPS) to acquire an optimal portfolio within a limited search field. With the aid of market supply and demand in micro economic theory, we put forward K-popular Suppliers Price Adjustment algorithm (KSPA) and Elastic Supply and Demand Price Adjustment algorithm (ESDPA) price adjustment algorithms to achieve market equilibrium within a limited budget. Finally, numerical results demonstrate that the proposed algorithms perform better in terms of trading success rate and total payoff by the comparisons of different algorithms.</div></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"109 ","pages":"Article 102040"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157411922500029X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Investment-driven budget allocation and dynamic pricing strategies in edge cache network
Edge Caching is an application with great commercial potential in accelerating content acquisition by near-client content caching. To provide high-quality services for customers, it is indispensable for content providers to purchase or rent sufficient wireless channels and cache storage resources from edge suppliers. However, few work has investigated how to allocate limited budget to the appropriate resources in an economically way for caching at a network edge. In this paper, we construct a Fisher cache market to tackle the budget allocation problem and the price adjustment problem in edge caching by using the portfolio approach. In the budget allocation problem, we utilize the Iso-cost line and threshold settings to narrow search space and propose an algorithm termed as Gradient descent based Portfolio Search (GBPS) to acquire an optimal portfolio within a limited search field. With the aid of market supply and demand in micro economic theory, we put forward K-popular Suppliers Price Adjustment algorithm (KSPA) and Elastic Supply and Demand Price Adjustment algorithm (ESDPA) price adjustment algorithms to achieve market equilibrium within a limited budget. Finally, numerical results demonstrate that the proposed algorithms perform better in terms of trading success rate and total payoff by the comparisons of different algorithms.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.