一类Hessian商型方程的Neumann问题

IF 2.3 2区 数学 Q1 MATHEMATICS
Jiabao Gong, Zixuan Liu, Qiang Tu
{"title":"一类Hessian商型方程的Neumann问题","authors":"Jiabao Gong,&nbsp;Zixuan Liu,&nbsp;Qiang Tu","doi":"10.1016/j.jde.2025.113251","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider the Neumann problem for a class of Hessian quotient equations involving a gradient term on the right-hand side in Euclidean space. More precisely, we derive the interior gradient estimates for the <span><math><mo>(</mo><mi>Λ</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span>-convex solution of Hessian quotient equation <span><math><mfrac><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>Λ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>)</mo></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>l</mi></mrow></msub><mo>(</mo><mi>Λ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>)</mo></mrow></mfrac><mo>=</mo><mi>ψ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></math></span> with <span><math><mn>0</mn><mo>≤</mo><mi>l</mi><mo>&lt;</mo><mi>k</mi><mo>≤</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> under the assumption of the growth condition. As an application, we obtain the global a priori estimates and the existence theorem for the Neumann problem of this Hessian quotient type equation.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"431 ","pages":"Article 113251"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Neumann problem for a class of Hessian quotient type equations\",\"authors\":\"Jiabao Gong,&nbsp;Zixuan Liu,&nbsp;Qiang Tu\",\"doi\":\"10.1016/j.jde.2025.113251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we consider the Neumann problem for a class of Hessian quotient equations involving a gradient term on the right-hand side in Euclidean space. More precisely, we derive the interior gradient estimates for the <span><math><mo>(</mo><mi>Λ</mi><mo>,</mo><mi>k</mi><mo>)</mo></math></span>-convex solution of Hessian quotient equation <span><math><mfrac><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><mi>Λ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>)</mo></mrow><mrow><msub><mrow><mi>σ</mi></mrow><mrow><mi>l</mi></mrow></msub><mo>(</mo><mi>Λ</mi><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo><mo>)</mo></mrow></mfrac><mo>=</mo><mi>ψ</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>D</mi><mi>u</mi><mo>)</mo></math></span> with <span><math><mn>0</mn><mo>≤</mo><mi>l</mi><mo>&lt;</mo><mi>k</mi><mo>≤</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msubsup></math></span> under the assumption of the growth condition. As an application, we obtain the global a priori estimates and the existence theorem for the Neumann problem of this Hessian quotient type equation.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"431 \",\"pages\":\"Article 113251\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625002724\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625002724","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了欧几里得空间中一类右邻梯度项的Hessian商方程的Neumann问题。更精确地说,我们推导了Hessian商方程σk(Λ(D2u))σl(Λ(D2u))=ψ(x,u,Du)在0≤l<;k≤Cn−1p−1条件下的(Λ,k)凸解的内部梯度估计。作为应用,我们得到了该Hessian商型方程的Neumann问题的全局先验估计和存在性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Neumann problem for a class of Hessian quotient type equations
In this paper, we consider the Neumann problem for a class of Hessian quotient equations involving a gradient term on the right-hand side in Euclidean space. More precisely, we derive the interior gradient estimates for the (Λ,k)-convex solution of Hessian quotient equation σk(Λ(D2u))σl(Λ(D2u))=ψ(x,u,Du) with 0l<kCn1p1 under the assumption of the growth condition. As an application, we obtain the global a priori estimates and the existence theorem for the Neumann problem of this Hessian quotient type equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信