图形的Grundy填充着色

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Didem Gözüpek , Iztok Peterin
{"title":"图形的Grundy填充着色","authors":"Didem Gözüpek ,&nbsp;Iztok Peterin","doi":"10.1016/j.dam.2025.03.024","DOIUrl":null,"url":null,"abstract":"<div><div>A map <span><math><mrow><mi>c</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> is a packing <span><math><mi>k</mi></math></span>-coloring if every two different vertices of the same color <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> are at distance more than <span><math><mi>i</mi></math></span>. The packing chromatic number <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span> is the smallest integer <span><math><mi>k</mi></math></span> such that there exists a packing <span><math><mi>k</mi></math></span>-coloring. In this paper we introduce the notion of <em>Grundy packing chromatic number</em>, analogous to the Grundy chromatic number of a graph. We first present a polynomial-time algorithm that is based on a greedy approach and gives a packing coloring of any graph <span><math><mi>G</mi></math></span>. We then define the Grundy packing chromatic number <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> as the maximum value that this algorithm yields in <span><math><mi>G</mi></math></span>. We present several properties of <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, provide results on the complexity of the problem as well as bounds and some exact results for <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 17-30"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grundy packing coloring of graphs\",\"authors\":\"Didem Gözüpek ,&nbsp;Iztok Peterin\",\"doi\":\"10.1016/j.dam.2025.03.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A map <span><math><mrow><mi>c</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> is a packing <span><math><mi>k</mi></math></span>-coloring if every two different vertices of the same color <span><math><mrow><mi>i</mi><mo>∈</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> are at distance more than <span><math><mi>i</mi></math></span>. The packing chromatic number <span><math><mrow><msub><mrow><mi>χ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span> is the smallest integer <span><math><mi>k</mi></math></span> such that there exists a packing <span><math><mi>k</mi></math></span>-coloring. In this paper we introduce the notion of <em>Grundy packing chromatic number</em>, analogous to the Grundy chromatic number of a graph. We first present a polynomial-time algorithm that is based on a greedy approach and gives a packing coloring of any graph <span><math><mi>G</mi></math></span>. We then define the Grundy packing chromatic number <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of a graph <span><math><mi>G</mi></math></span> as the maximum value that this algorithm yields in <span><math><mi>G</mi></math></span>. We present several properties of <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, provide results on the complexity of the problem as well as bounds and some exact results for <span><math><mrow><msub><mrow><mi>Γ</mi></mrow><mrow><mi>ρ</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"371 \",\"pages\":\"Pages 17-30\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25001490\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001490","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图G的映射c:V(G)→{1,…,k}如果相同颜色i∈{1,…,k}的每两个不同顶点的距离大于i,则该映射c:V(G)→{1,…,k}是一个填充k着色。G的填充色数χρ(G)是使得存在一个填充k着色的最小整数k。本文引入了格朗第填充色数的概念,类似于图的格朗第色数。我们首先提出了一个基于贪心方法的多项式时间算法,并给出了任意图G的填充着色。然后定义了图G的Grundy填充着色数Γρ(G)作为该算法在G中产生的最大值。我们给出了Γρ(G)的几个性质,提供了问题复杂性的结果以及Γρ(G)的界和一些精确结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Grundy packing coloring of graphs
A map c:V(G){1,,k} of a graph G is a packing k-coloring if every two different vertices of the same color i{1,,k} are at distance more than i. The packing chromatic number χρ(G) of G is the smallest integer k such that there exists a packing k-coloring. In this paper we introduce the notion of Grundy packing chromatic number, analogous to the Grundy chromatic number of a graph. We first present a polynomial-time algorithm that is based on a greedy approach and gives a packing coloring of any graph G. We then define the Grundy packing chromatic number Γρ(G) of a graph G as the maximum value that this algorithm yields in G. We present several properties of Γρ(G), provide results on the complexity of the problem as well as bounds and some exact results for Γρ(G).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信