用大m提升法研究分离凸包

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Yushan Qu, Jon Lee
{"title":"用大m提升法研究分离凸包","authors":"Yushan Qu,&nbsp;Jon Lee","doi":"10.1016/j.dam.2025.03.013","DOIUrl":null,"url":null,"abstract":"<div><div>We study the natural extended-variable formulation for the disjunction of <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span> polytopes in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We demonstrate that the convex hull <span><math><mi>D</mi></math></span> in the natural extended-variable space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi><mo>+</mo><mi>n</mi></mrow></msup></math></span> is given by full optimal big-M lifting (i) when <span><math><mrow><mi>d</mi><mo>≤</mo><mn>2</mn></mrow></math></span> (and that it is not generally true for <span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span>), and also (ii) under some technical conditions, when the polytopes have a common facet-describing constraint matrix, for arbitrary <span><math><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. We give a broad family of examples with <span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow></math></span>, where the convex hull is not described after employing all full optimal big-M lifting inequalities, but it is described after one round of MIR inequalities. Additionally, we give some general results on the polyhedral structure of <span><math><mi>D</mi></math></span>, and we demonstrate that all facets of <span><math><mi>D</mi></math></span> can be enumerated in polynomial time when <span><math><mi>d</mi></math></span> is fixed.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"371 ","pages":"Pages 31-45"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On disjunction convex hulls by big-M lifting\",\"authors\":\"Yushan Qu,&nbsp;Jon Lee\",\"doi\":\"10.1016/j.dam.2025.03.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study the natural extended-variable formulation for the disjunction of <span><math><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></math></span> polytopes in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>. We demonstrate that the convex hull <span><math><mi>D</mi></math></span> in the natural extended-variable space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi><mo>+</mo><mi>n</mi></mrow></msup></math></span> is given by full optimal big-M lifting (i) when <span><math><mrow><mi>d</mi><mo>≤</mo><mn>2</mn></mrow></math></span> (and that it is not generally true for <span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span>), and also (ii) under some technical conditions, when the polytopes have a common facet-describing constraint matrix, for arbitrary <span><math><mrow><mi>d</mi><mo>≥</mo><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>≥</mo><mn>1</mn></mrow></math></span>. We give a broad family of examples with <span><math><mrow><mi>d</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow></math></span>, where the convex hull is not described after employing all full optimal big-M lifting inequalities, but it is described after one round of MIR inequalities. Additionally, we give some general results on the polyhedral structure of <span><math><mi>D</mi></math></span>, and we demonstrate that all facets of <span><math><mi>D</mi></math></span> can be enumerated in polynomial time when <span><math><mi>d</mi></math></span> is fixed.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"371 \",\"pages\":\"Pages 31-45\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25001404\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001404","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了Rd中n+1多面体的自然扩展变量解的公式。我们证明了自然扩展变量空间Rd+n中的凸包D是由满最优大- m提升给出的(i),当D≤2时(并且当D≥3时不一般成立),并且(ii)在某些技术条件下,当多面体有一个共同的面描述约束矩阵时,对于任意D≥1和n≥1。我们给出了一个广义的d≥3且n=1的例子,其中凸壳不是在使用所有完全最优大m提升不等式之后描述的,而是在一轮MIR不等式之后描述的。此外,我们给出了D的多面体结构的一些一般结果,并证明了当D固定时,D的所有面都可以在多项式时间内被枚举。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On disjunction convex hulls by big-M lifting
We study the natural extended-variable formulation for the disjunction of n+1 polytopes in Rd. We demonstrate that the convex hull D in the natural extended-variable space Rd+n is given by full optimal big-M lifting (i) when d2 (and that it is not generally true for d3), and also (ii) under some technical conditions, when the polytopes have a common facet-describing constraint matrix, for arbitrary d1 and n1. We give a broad family of examples with d3 and n=1, where the convex hull is not described after employing all full optimal big-M lifting inequalities, but it is described after one round of MIR inequalities. Additionally, we give some general results on the polyhedral structure of D, and we demonstrate that all facets of D can be enumerated in polynomial time when d is fixed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信