标志简单复形的简单同伦与图的可收缩

IF 0.6 4区 数学 Q3 MATHEMATICS
Anton Dochtermann , Takahiro Matsushita
{"title":"标志简单复形的简单同伦与图的可收缩","authors":"Anton Dochtermann ,&nbsp;Takahiro Matsushita","doi":"10.1016/j.topol.2025.109326","DOIUrl":null,"url":null,"abstract":"<div><div>In his work on molecular spaces, Ivashchenko introduced the notion of an <span><math><mi>I</mi></math></span>-contractible transformation on a graph <em>G</em>, a family of addition/deletion operations on its vertices and edges. Chen, Yau, and Yeh used these operations to define the <span><math><mi>I</mi></math></span>-homotopy type of a graph, and showed that <span><math><mi>I</mi></math></span>-contractible transformations preserve the simple homotopy type of <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, the clique complex of <em>G</em>. In other work, Boulet, Fieux, and Jouve introduced the notion of <em>s</em>-homotopy of graphs to characterize the simple homotopy type of a flag simplicial complex. They proved that <em>s</em>-homotopy preserves <span><math><mi>I</mi></math></span>-homotopy, and asked whether the converse holds. In this note, we answer their question in the affirmative, concluding that graphs <em>G</em> and <em>H</em> are <span><math><mi>I</mi></math></span>-homotopy equivalent if and only if <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>C</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> are simple homotopy equivalent. We also show that a finite graph <em>G</em> is <span><math><mi>I</mi></math></span>-contractible if and only if <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is contractible, which answers a question posed by the first author, Espinoza, Frías-Armenta, and Hernández. We use these ideas to give a characterization of simple homotopy for arbitrary simplicial complexes in terms of links of vertices.</div></div>","PeriodicalId":51201,"journal":{"name":"Topology and its Applications","volume":"367 ","pages":"Article 109326"},"PeriodicalIF":0.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple homotopy of flag simplicial complexes and contractible contractions of graphs\",\"authors\":\"Anton Dochtermann ,&nbsp;Takahiro Matsushita\",\"doi\":\"10.1016/j.topol.2025.109326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In his work on molecular spaces, Ivashchenko introduced the notion of an <span><math><mi>I</mi></math></span>-contractible transformation on a graph <em>G</em>, a family of addition/deletion operations on its vertices and edges. Chen, Yau, and Yeh used these operations to define the <span><math><mi>I</mi></math></span>-homotopy type of a graph, and showed that <span><math><mi>I</mi></math></span>-contractible transformations preserve the simple homotopy type of <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span>, the clique complex of <em>G</em>. In other work, Boulet, Fieux, and Jouve introduced the notion of <em>s</em>-homotopy of graphs to characterize the simple homotopy type of a flag simplicial complex. They proved that <em>s</em>-homotopy preserves <span><math><mi>I</mi></math></span>-homotopy, and asked whether the converse holds. In this note, we answer their question in the affirmative, concluding that graphs <em>G</em> and <em>H</em> are <span><math><mi>I</mi></math></span>-homotopy equivalent if and only if <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> and <span><math><mi>C</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> are simple homotopy equivalent. We also show that a finite graph <em>G</em> is <span><math><mi>I</mi></math></span>-contractible if and only if <span><math><mi>C</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is contractible, which answers a question posed by the first author, Espinoza, Frías-Armenta, and Hernández. We use these ideas to give a characterization of simple homotopy for arbitrary simplicial complexes in terms of links of vertices.</div></div>\",\"PeriodicalId\":51201,\"journal\":{\"name\":\"Topology and its Applications\",\"volume\":\"367 \",\"pages\":\"Article 109326\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166864125001245\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166864125001245","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在他关于分子空间的工作中,Ivashchenko引入了图G上的i可缩变换的概念,这是在其顶点和边上的一系列加法/删除操作。Chen, Yau和Yeh利用这些运算定义了图的i -同伦型,并证明了i -可缩并变换保留了C(G)的简单同伦型和G的团复型。在其他工作中,Boulet, Fieux和Jouve引入了图的s-同伦的概念来表征标志简单复型的简单同伦型。他们证明了s-同伦保留了i -同伦,并问逆是否成立。在本文中,我们肯定地回答了他们的问题,得出了当且仅当C(G)和C(H)是简单同伦等价的图G和H是i -同伦等价的结论。我们还证明了有限图G是i可缩的当且仅当C(G)可缩,这回答了第一作者Espinoza, Frías-Armenta和Hernández提出的问题。利用这些思想,我们给出了任意简单复形在顶点连接上的简单同伦的刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple homotopy of flag simplicial complexes and contractible contractions of graphs
In his work on molecular spaces, Ivashchenko introduced the notion of an I-contractible transformation on a graph G, a family of addition/deletion operations on its vertices and edges. Chen, Yau, and Yeh used these operations to define the I-homotopy type of a graph, and showed that I-contractible transformations preserve the simple homotopy type of C(G), the clique complex of G. In other work, Boulet, Fieux, and Jouve introduced the notion of s-homotopy of graphs to characterize the simple homotopy type of a flag simplicial complex. They proved that s-homotopy preserves I-homotopy, and asked whether the converse holds. In this note, we answer their question in the affirmative, concluding that graphs G and H are I-homotopy equivalent if and only if C(G) and C(H) are simple homotopy equivalent. We also show that a finite graph G is I-contractible if and only if C(G) is contractible, which answers a question posed by the first author, Espinoza, Frías-Armenta, and Hernández. We use these ideas to give a characterization of simple homotopy for arbitrary simplicial complexes in terms of links of vertices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
33.30%
发文量
251
审稿时长
6 months
期刊介绍: Topology and its Applications is primarily concerned with publishing original research papers of moderate length. However, a limited number of carefully selected survey or expository papers are also included. The mathematical focus of the journal is that suggested by the title: Research in Topology. It is felt that it is inadvisable to attempt a definitive description of topology as understood for this journal. Certainly the subject includes the algebraic, general, geometric, and set-theoretic facets of topology as well as areas of interactions between topology and other mathematical disciplines, e.g. topological algebra, topological dynamics, functional analysis, category theory. Since the roles of various aspects of topology continue to change, the non-specific delineation of topics serves to reflect the current state of research in topology. At regular intervals, the journal publishes a section entitled Open Problems in Topology, edited by J. van Mill and G.M. Reed. This is a status report on the 1100 problems listed in the book of the same name published by North-Holland in 1990, edited by van Mill and Reed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信