摆脱单纳米孔的限制,设计仿生纳米孔阵列

IF 7.9 2区 化学 Q1 CHEMISTRY, PHYSICAL
Ethan Cao , Zuzanna S. Siwy
{"title":"摆脱单纳米孔的限制,设计仿生纳米孔阵列","authors":"Ethan Cao ,&nbsp;Zuzanna S. Siwy","doi":"10.1016/j.coelec.2025.101677","DOIUrl":null,"url":null,"abstract":"<div><div>Single nanopores revolutionized biological and chemical sensing, enabled discovery and understanding of transport phenomena at nanoconfinement as well as preparation of biomimetic systems. Single nanopore research also inspired the development of nanofabrication techniques to achieve structures with fully controlled electrochemical properties. The time became mature to go a step further, namely, to leave the constraints of single nanopores and prepare nanopore arrays whose function is dictated by stimuli responsive properties of constituent nanopores. Such responsive arrays would mimic ionic circuitry of biological systems that rely on different types of channels. The developing field of nanopore arrays offers opportunities to prepare new types of biological sensors, ionic computing systems, including logic gates and mimics of the brain. These directions of research challenge scientists to develop experimental, theoretical, and modeling tools to design complex ionic systems with emergent functionalities.</div></div>","PeriodicalId":11028,"journal":{"name":"Current Opinion in Electrochemistry","volume":"51 ","pages":"Article 101677"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leaving constraints of single nanopores and designing biomimetic nanopore arrays\",\"authors\":\"Ethan Cao ,&nbsp;Zuzanna S. Siwy\",\"doi\":\"10.1016/j.coelec.2025.101677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Single nanopores revolutionized biological and chemical sensing, enabled discovery and understanding of transport phenomena at nanoconfinement as well as preparation of biomimetic systems. Single nanopore research also inspired the development of nanofabrication techniques to achieve structures with fully controlled electrochemical properties. The time became mature to go a step further, namely, to leave the constraints of single nanopores and prepare nanopore arrays whose function is dictated by stimuli responsive properties of constituent nanopores. Such responsive arrays would mimic ionic circuitry of biological systems that rely on different types of channels. The developing field of nanopore arrays offers opportunities to prepare new types of biological sensors, ionic computing systems, including logic gates and mimics of the brain. These directions of research challenge scientists to develop experimental, theoretical, and modeling tools to design complex ionic systems with emergent functionalities.</div></div>\",\"PeriodicalId\":11028,\"journal\":{\"name\":\"Current Opinion in Electrochemistry\",\"volume\":\"51 \",\"pages\":\"Article 101677\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Electrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451910325000365\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Electrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451910325000365","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

单纳米孔彻底改变了生物和化学传感,使人们能够发现和理解纳米约束下的输运现象,以及制备仿生系统。单纳米孔的研究也激发了纳米制造技术的发展,以实现具有完全控制的电化学性能的结构。更进一步的时机已经成熟,即摆脱单纳米孔的限制,制备由组成纳米孔的刺激响应特性决定功能的纳米孔阵列。这种反应灵敏的阵列将模仿依赖于不同类型通道的生物系统的离子电路。纳米孔阵列的发展为制备新型生物传感器、离子计算系统,包括逻辑门和模拟大脑提供了机会。这些研究方向要求科学家开发实验、理论和建模工具来设计具有紧急功能的复杂离子系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Leaving constraints of single nanopores and designing biomimetic nanopore arrays

Leaving constraints of single nanopores and designing biomimetic nanopore arrays
Single nanopores revolutionized biological and chemical sensing, enabled discovery and understanding of transport phenomena at nanoconfinement as well as preparation of biomimetic systems. Single nanopore research also inspired the development of nanofabrication techniques to achieve structures with fully controlled electrochemical properties. The time became mature to go a step further, namely, to leave the constraints of single nanopores and prepare nanopore arrays whose function is dictated by stimuli responsive properties of constituent nanopores. Such responsive arrays would mimic ionic circuitry of biological systems that rely on different types of channels. The developing field of nanopore arrays offers opportunities to prepare new types of biological sensors, ionic computing systems, including logic gates and mimics of the brain. These directions of research challenge scientists to develop experimental, theoretical, and modeling tools to design complex ionic systems with emergent functionalities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Electrochemistry
Current Opinion in Electrochemistry Chemistry-Analytical Chemistry
CiteScore
14.00
自引率
5.90%
发文量
272
审稿时长
73 days
期刊介绍: The development of the Current Opinion journals stemmed from the acknowledgment of the growing challenge for specialists to stay abreast of the expanding volume of information within their field. In Current Opinion in Electrochemistry, they help the reader by providing in a systematic manner: 1.The views of experts on current advances in electrochemistry in a clear and readable form. 2.Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. In the realm of electrochemistry, the subject is divided into 12 themed sections, with each section undergoing an annual review cycle: • Bioelectrochemistry • Electrocatalysis • Electrochemical Materials and Engineering • Energy Storage: Batteries and Supercapacitors • Energy Transformation • Environmental Electrochemistry • Fundamental & Theoretical Electrochemistry • Innovative Methods in Electrochemistry • Organic & Molecular Electrochemistry • Physical & Nano-Electrochemistry • Sensors & Bio-sensors •
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信