利用工程技术大规模恢复海草的道路

IF 3.9 2区 环境科学与生态学 Q1 ECOLOGY
Richard K.F. Unsworth , Samuel C. Rees
{"title":"利用工程技术大规模恢复海草的道路","authors":"Richard K.F. Unsworth ,&nbsp;Samuel C. Rees","doi":"10.1016/j.ecoleng.2025.107607","DOIUrl":null,"url":null,"abstract":"<div><div>Seagrass restoration efforts have been ongoing for decades, with early innovations dating back to the 1970s. While there has been progress, many projects have high failure rates, but the consensus within the literature is that increasing spatial scale will lead to higher success rates. To achieve scaled-up restoration, innovation in the context of mechanised approaches is required that can reduce the costs and labour-intensive processes and improve reliability. This review paper focuses on the restoration of seagrass meadows and how engineering solutions have been used to help scale up these efforts. The paper examines the different stages within seagrass restoration and how mechanised approaches have been used to date, along with their levels of success or failure. Various stages of restoration are examined, from seed collection, separation, storage, planting, and the biological and environmental engineering challenges associated with upscaling these efforts. The review focuses primarily on <em>Zostera</em> species due to its dominance in the literature, but expands to other species where possible. Although extensive mechanised approaches have been used (e.g. seed planting sleds), a common thread through the studies remains the limited underpinning understanding of the biology to improve the use of these methods and a solid understanding of the relative merits of the use of these techniques. Despite innovations, seagrass restoration is still marked by high failure rates. More interdisciplinary work is required to link biological and engineering solutions to environmental variability for greater restoration success.</div></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":"215 ","pages":"Article 107607"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The road to seagrass restoration at scale using engineering\",\"authors\":\"Richard K.F. Unsworth ,&nbsp;Samuel C. Rees\",\"doi\":\"10.1016/j.ecoleng.2025.107607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Seagrass restoration efforts have been ongoing for decades, with early innovations dating back to the 1970s. While there has been progress, many projects have high failure rates, but the consensus within the literature is that increasing spatial scale will lead to higher success rates. To achieve scaled-up restoration, innovation in the context of mechanised approaches is required that can reduce the costs and labour-intensive processes and improve reliability. This review paper focuses on the restoration of seagrass meadows and how engineering solutions have been used to help scale up these efforts. The paper examines the different stages within seagrass restoration and how mechanised approaches have been used to date, along with their levels of success or failure. Various stages of restoration are examined, from seed collection, separation, storage, planting, and the biological and environmental engineering challenges associated with upscaling these efforts. The review focuses primarily on <em>Zostera</em> species due to its dominance in the literature, but expands to other species where possible. Although extensive mechanised approaches have been used (e.g. seed planting sleds), a common thread through the studies remains the limited underpinning understanding of the biology to improve the use of these methods and a solid understanding of the relative merits of the use of these techniques. Despite innovations, seagrass restoration is still marked by high failure rates. More interdisciplinary work is required to link biological and engineering solutions to environmental variability for greater restoration success.</div></div>\",\"PeriodicalId\":11490,\"journal\":{\"name\":\"Ecological Engineering\",\"volume\":\"215 \",\"pages\":\"Article 107607\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925857425000953\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925857425000953","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

海草修复工作已经进行了几十年,早期的创新可以追溯到20世纪70年代。虽然已经取得了进展,但许多项目的失败率很高,但文献中的共识是,增加空间规模将导致更高的成功率。为了实现大规模修复,需要在机械化方法的背景下进行创新,以降低成本和劳动密集型流程,并提高可靠性。这篇综述论文的重点是海草草甸的恢复以及如何利用工程解决方案来帮助扩大这些努力。本文研究了海草恢复的不同阶段,以及迄今为止如何使用机械化方法,以及它们的成功或失败程度。研究了恢复的各个阶段,从种子收集、分离、储存、种植,以及与扩大这些努力相关的生物和环境工程挑战。由于其在文献中的优势地位,本综述主要侧重于Zostera物种,但在可能的情况下扩展到其他物种。尽管已经使用了广泛的机械化方法(例如播种雪橇),但贯穿研究的一个共同主线仍然是对生物学的有限基础理解,以改进这些方法的使用,并对使用这些技术的相对优点有扎实的理解。尽管有创新,但海草恢复的失败率仍然很高。为了更大的恢复成功,需要更多的跨学科工作将生物和工程解决方案与环境变化联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The road to seagrass restoration at scale using engineering
Seagrass restoration efforts have been ongoing for decades, with early innovations dating back to the 1970s. While there has been progress, many projects have high failure rates, but the consensus within the literature is that increasing spatial scale will lead to higher success rates. To achieve scaled-up restoration, innovation in the context of mechanised approaches is required that can reduce the costs and labour-intensive processes and improve reliability. This review paper focuses on the restoration of seagrass meadows and how engineering solutions have been used to help scale up these efforts. The paper examines the different stages within seagrass restoration and how mechanised approaches have been used to date, along with their levels of success or failure. Various stages of restoration are examined, from seed collection, separation, storage, planting, and the biological and environmental engineering challenges associated with upscaling these efforts. The review focuses primarily on Zostera species due to its dominance in the literature, but expands to other species where possible. Although extensive mechanised approaches have been used (e.g. seed planting sleds), a common thread through the studies remains the limited underpinning understanding of the biology to improve the use of these methods and a solid understanding of the relative merits of the use of these techniques. Despite innovations, seagrass restoration is still marked by high failure rates. More interdisciplinary work is required to link biological and engineering solutions to environmental variability for greater restoration success.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Engineering
Ecological Engineering 环境科学-工程:环境
CiteScore
8.00
自引率
5.30%
发文量
293
审稿时长
57 days
期刊介绍: Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers. Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信