Xuewei Bi , Zhinan Mao , Yilin Zhang , Zeqi Ren , Kang Yang , Chunhao Yu , Lei Chen , Rui Zheng , Juan Guan , Zhenhai Liu , Binsheng Yu , Yongcan Huang , Xiong Shu , Yufeng Zheng
{"title":"增强免疫调节的内源性双响应自适应丝素蛋白支架用于颅骨再生","authors":"Xuewei Bi , Zhinan Mao , Yilin Zhang , Zeqi Ren , Kang Yang , Chunhao Yu , Lei Chen , Rui Zheng , Juan Guan , Zhenhai Liu , Binsheng Yu , Yongcan Huang , Xiong Shu , Yufeng Zheng","doi":"10.1016/j.biomaterials.2025.123261","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the current biomaterials (e.g. titanium mesh and polyether ether ketone) have been applied to clinical skull repair, the limitations on mechanical match, shape adaptability, bioactivity and osteointegration have greatly limited their clinical application. In this work, we constructed a water and inflammatory microenvironment dual-responsive self-adaptive silk fibroin-magnesium oxide-based scaffold with the matrix metalloproteinase-2-responsive gelatin-methacryloyl-interleukin-4 (IL-4) coating, which presented good mechanical compliance, quickly shape matching and intraoperative reprocessability. With the capability of responding to an acute inflammation microenvironment followed by a triggered on-demand release of the IL-4, the combination of immunoactive IL-4 and Mg<sup>2+</sup> co-ordinately facilitated metabolic reprogramming by suppressing glycolysis, promoting mitochondrial oxidative phosphorylation and modulating adenosine 5′-monophosphate-activated protein kinase (AMPK) signalling pathways in macrophages, resulting in significantly facilitating M2 macrophage activation. During the stage of tissue remodelling, the sustained release of Mg<sup>2+</sup> further promoted macrophage M2 polarization and the expression of anti-inflammatory cytokines, significantly reduced immune response and improved ectopic osteogenesis ability. Meanwhile, the cranial defect models of male rats demonstrated that this scaffold could significantly enhance biomineralized deposition and vascularisation, and achieve good bone regeneration of cranial defects. Overall, the bioactive scaffold provides a promising biomaterial and alternative repair strategy for critical-size skull defect repair.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"320 ","pages":"Article 123261"},"PeriodicalIF":12.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endogenous dual-responsive and self-adaptive silk fibroin-based scaffold with enhancement of immunomodulation for skull regeneration\",\"authors\":\"Xuewei Bi , Zhinan Mao , Yilin Zhang , Zeqi Ren , Kang Yang , Chunhao Yu , Lei Chen , Rui Zheng , Juan Guan , Zhenhai Liu , Binsheng Yu , Yongcan Huang , Xiong Shu , Yufeng Zheng\",\"doi\":\"10.1016/j.biomaterials.2025.123261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite the current biomaterials (e.g. titanium mesh and polyether ether ketone) have been applied to clinical skull repair, the limitations on mechanical match, shape adaptability, bioactivity and osteointegration have greatly limited their clinical application. In this work, we constructed a water and inflammatory microenvironment dual-responsive self-adaptive silk fibroin-magnesium oxide-based scaffold with the matrix metalloproteinase-2-responsive gelatin-methacryloyl-interleukin-4 (IL-4) coating, which presented good mechanical compliance, quickly shape matching and intraoperative reprocessability. With the capability of responding to an acute inflammation microenvironment followed by a triggered on-demand release of the IL-4, the combination of immunoactive IL-4 and Mg<sup>2+</sup> co-ordinately facilitated metabolic reprogramming by suppressing glycolysis, promoting mitochondrial oxidative phosphorylation and modulating adenosine 5′-monophosphate-activated protein kinase (AMPK) signalling pathways in macrophages, resulting in significantly facilitating M2 macrophage activation. During the stage of tissue remodelling, the sustained release of Mg<sup>2+</sup> further promoted macrophage M2 polarization and the expression of anti-inflammatory cytokines, significantly reduced immune response and improved ectopic osteogenesis ability. Meanwhile, the cranial defect models of male rats demonstrated that this scaffold could significantly enhance biomineralized deposition and vascularisation, and achieve good bone regeneration of cranial defects. Overall, the bioactive scaffold provides a promising biomaterial and alternative repair strategy for critical-size skull defect repair.</div></div>\",\"PeriodicalId\":254,\"journal\":{\"name\":\"Biomaterials\",\"volume\":\"320 \",\"pages\":\"Article 123261\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142961225001802\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225001802","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Endogenous dual-responsive and self-adaptive silk fibroin-based scaffold with enhancement of immunomodulation for skull regeneration
Despite the current biomaterials (e.g. titanium mesh and polyether ether ketone) have been applied to clinical skull repair, the limitations on mechanical match, shape adaptability, bioactivity and osteointegration have greatly limited their clinical application. In this work, we constructed a water and inflammatory microenvironment dual-responsive self-adaptive silk fibroin-magnesium oxide-based scaffold with the matrix metalloproteinase-2-responsive gelatin-methacryloyl-interleukin-4 (IL-4) coating, which presented good mechanical compliance, quickly shape matching and intraoperative reprocessability. With the capability of responding to an acute inflammation microenvironment followed by a triggered on-demand release of the IL-4, the combination of immunoactive IL-4 and Mg2+ co-ordinately facilitated metabolic reprogramming by suppressing glycolysis, promoting mitochondrial oxidative phosphorylation and modulating adenosine 5′-monophosphate-activated protein kinase (AMPK) signalling pathways in macrophages, resulting in significantly facilitating M2 macrophage activation. During the stage of tissue remodelling, the sustained release of Mg2+ further promoted macrophage M2 polarization and the expression of anti-inflammatory cytokines, significantly reduced immune response and improved ectopic osteogenesis ability. Meanwhile, the cranial defect models of male rats demonstrated that this scaffold could significantly enhance biomineralized deposition and vascularisation, and achieve good bone regeneration of cranial defects. Overall, the bioactive scaffold provides a promising biomaterial and alternative repair strategy for critical-size skull defect repair.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.