环保K2TiI6/MASnI3钙钛矿基串联太阳能电池的设计见解

IF 2.7 Q2 PHYSICS, CONDENSED MATTER
Md. Roman Mia , Md. Amanullah , Md. Mahfuzul Haque , Sheikh Hasib Cheragee
{"title":"环保K2TiI6/MASnI3钙钛矿基串联太阳能电池的设计见解","authors":"Md. Roman Mia ,&nbsp;Md. Amanullah ,&nbsp;Md. Mahfuzul Haque ,&nbsp;Sheikh Hasib Cheragee","doi":"10.1016/j.micrna.2025.208150","DOIUrl":null,"url":null,"abstract":"<div><div>Perovskite materials have gained significant attention due to their exceptional optical and electronic properties, which have transformed solar cell technology. In addition, their high light absorption capacity, long carrier mobility, tunable bandgap, and affordable cost of production make perovskites desirable as ideal materials for solar cell technology. In this article, a double-absorber-based solar cell is designed and optimized using SCAPS-1D solar simulation software. The study used K<sub>2</sub>TiI<sub>6</sub> and MASnI<sub>3</sub> organic-inorganic perovskite as the top and bottom adsorber layers, respectively. The primary objective of this research is to evaluate the compatible components for the electron-transporting layers (ETL) and hole-transporting layers (HTL). Also, this research aims to determine optimal values for active layer thickness, temperature, absorbing defect density, and metal work functions to enhance photovoltaic cell performance. Upon optimizing the proposed solar cell architecture by changing various elements in the ETL and HTL, the optimal configuration has achieved the FTO/TiO<sub>2</sub>/K<sub>2</sub>TiI<sub>6</sub>/MASnI<sub>3</sub>/Cu<sub>2</sub>O/W structure, which demonstrates an open circuit voltage of V<sub>oc</sub> = 1.138 V, a fill factor (FF) of 82.38 %, a short-circuit current of J<sub>sc</sub> = 34.834 mA/cm<sup>2</sup>, and a maximum power conversion efficiency (PCE) of 32.67 %. Progress is achieved by utilizing TiO<sub>2</sub> as the ETL and Cu<sub>2</sub>O as the HTL in the configuration when the thickness of the MASnI<sub>3</sub> absorber was set at 1 μm, the K<sub>2</sub>TiI<sub>6</sub> absorber was at 0.15 μm, and back contact metal W (5.22eV). The light and flexible structure of K<sub>2</sub>TiI<sub>6</sub> and MASnI<sub>3</sub> perovskite makes it promising for next-generation photovoltaic technology. This model of current silicon and lead-based photovoltaic technologies can be an alternative, making solar energy use more accessible and efficient.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"204 ","pages":"Article 208150"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design insights into eco-friendly K2TiI6/MASnI3 perovskite-based tandem solar cell\",\"authors\":\"Md. Roman Mia ,&nbsp;Md. Amanullah ,&nbsp;Md. Mahfuzul Haque ,&nbsp;Sheikh Hasib Cheragee\",\"doi\":\"10.1016/j.micrna.2025.208150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Perovskite materials have gained significant attention due to their exceptional optical and electronic properties, which have transformed solar cell technology. In addition, their high light absorption capacity, long carrier mobility, tunable bandgap, and affordable cost of production make perovskites desirable as ideal materials for solar cell technology. In this article, a double-absorber-based solar cell is designed and optimized using SCAPS-1D solar simulation software. The study used K<sub>2</sub>TiI<sub>6</sub> and MASnI<sub>3</sub> organic-inorganic perovskite as the top and bottom adsorber layers, respectively. The primary objective of this research is to evaluate the compatible components for the electron-transporting layers (ETL) and hole-transporting layers (HTL). Also, this research aims to determine optimal values for active layer thickness, temperature, absorbing defect density, and metal work functions to enhance photovoltaic cell performance. Upon optimizing the proposed solar cell architecture by changing various elements in the ETL and HTL, the optimal configuration has achieved the FTO/TiO<sub>2</sub>/K<sub>2</sub>TiI<sub>6</sub>/MASnI<sub>3</sub>/Cu<sub>2</sub>O/W structure, which demonstrates an open circuit voltage of V<sub>oc</sub> = 1.138 V, a fill factor (FF) of 82.38 %, a short-circuit current of J<sub>sc</sub> = 34.834 mA/cm<sup>2</sup>, and a maximum power conversion efficiency (PCE) of 32.67 %. Progress is achieved by utilizing TiO<sub>2</sub> as the ETL and Cu<sub>2</sub>O as the HTL in the configuration when the thickness of the MASnI<sub>3</sub> absorber was set at 1 μm, the K<sub>2</sub>TiI<sub>6</sub> absorber was at 0.15 μm, and back contact metal W (5.22eV). The light and flexible structure of K<sub>2</sub>TiI<sub>6</sub> and MASnI<sub>3</sub> perovskite makes it promising for next-generation photovoltaic technology. This model of current silicon and lead-based photovoltaic technologies can be an alternative, making solar energy use more accessible and efficient.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"204 \",\"pages\":\"Article 208150\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325000792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325000792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿材料由于其特殊的光学和电子特性而获得了极大的关注,这改变了太阳能电池技术。此外,钙钛矿的高光吸收能力、长载流子迁移率、可调带隙和可承受的生产成本使其成为太阳能电池技术的理想材料。本文利用SCAPS-1D太阳能模拟软件对双吸收体太阳能电池进行了设计和优化。采用K2TiI6和MASnI3有机-无机钙钛矿分别作为吸附层的顶部和底部。本研究的主要目的是评估电子输运层(ETL)和空穴输运层(HTL)的兼容元件。此外,本研究旨在确定有源层厚度、温度、吸收缺陷密度和金属工作函数的最佳值,以提高光伏电池的性能。通过改变ETL和HTL中的各种元素对所提出的太阳能电池结构进行优化,得到了FTO/TiO2/K2TiI6/MASnI3/Cu2O/W结构,开路电压Voc = 1.138 V,填充因子(FF)为82.38%,短路电流Jsc = 34.834 mA/cm2,最大功率转换效率(PCE)为32.67%。在MASnI3吸波器厚度为1 μm、K2TiI6吸波器厚度为0.15 μm、背接触金属W (5.22eV)的条件下,以TiO2为ETL、Cu2O为HTL的结构取得了进展。K2TiI6和MASnI3钙钛矿轻而灵活的结构使其成为下一代光伏技术的理想材料。目前这种基于硅和铅的光伏技术模型可以成为一种替代方案,使太阳能的使用更容易获得,效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design insights into eco-friendly K2TiI6/MASnI3 perovskite-based tandem solar cell
Perovskite materials have gained significant attention due to their exceptional optical and electronic properties, which have transformed solar cell technology. In addition, their high light absorption capacity, long carrier mobility, tunable bandgap, and affordable cost of production make perovskites desirable as ideal materials for solar cell technology. In this article, a double-absorber-based solar cell is designed and optimized using SCAPS-1D solar simulation software. The study used K2TiI6 and MASnI3 organic-inorganic perovskite as the top and bottom adsorber layers, respectively. The primary objective of this research is to evaluate the compatible components for the electron-transporting layers (ETL) and hole-transporting layers (HTL). Also, this research aims to determine optimal values for active layer thickness, temperature, absorbing defect density, and metal work functions to enhance photovoltaic cell performance. Upon optimizing the proposed solar cell architecture by changing various elements in the ETL and HTL, the optimal configuration has achieved the FTO/TiO2/K2TiI6/MASnI3/Cu2O/W structure, which demonstrates an open circuit voltage of Voc = 1.138 V, a fill factor (FF) of 82.38 %, a short-circuit current of Jsc = 34.834 mA/cm2, and a maximum power conversion efficiency (PCE) of 32.67 %. Progress is achieved by utilizing TiO2 as the ETL and Cu2O as the HTL in the configuration when the thickness of the MASnI3 absorber was set at 1 μm, the K2TiI6 absorber was at 0.15 μm, and back contact metal W (5.22eV). The light and flexible structure of K2TiI6 and MASnI3 perovskite makes it promising for next-generation photovoltaic technology. This model of current silicon and lead-based photovoltaic technologies can be an alternative, making solar energy use more accessible and efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信