声波诱导空化技术加速无水乳脂结晶

IF 5.3 2区 农林科学 Q1 ENGINEERING, CHEMICAL
Ehsan Seyfali , Mohammad Hadi Khoshtaghaza , Konstantina Sfyra , Lars Wiking
{"title":"声波诱导空化技术加速无水乳脂结晶","authors":"Ehsan Seyfali ,&nbsp;Mohammad Hadi Khoshtaghaza ,&nbsp;Konstantina Sfyra ,&nbsp;Lars Wiking","doi":"10.1016/j.jfoodeng.2025.112580","DOIUrl":null,"url":null,"abstract":"<div><div>The present study demonstrated that acoustic wave-induced cavitation generation (AWICG, 100 Hz, 100 % amplitude, 20 W, 5 s) provides a promising alternative to high-intensity ultrasound (HIU, 24 kHz, 7 mm horn, 100 % amplitude, 200 W, 5 s) for the crystallization of anhydrous milk fat. AWICG significantly accelerated crystallization compared to the control at 25 °C. Both treatments reduced crystal size and decreased the hardness of the final product. Notably, AWICG demonstrated a substantial advantage in energy efficiency, consuming 60.9 % less energy than HIU. The findings indicate that AWICG, which employs the advantages of resonant Faraday wave excitation, presents a promising energy-efficient alternative for AMF processing, with the potential for enhanced product quality and sustainability.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"397 ","pages":"Article 112580"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating crystallization of anhydrous milk fat using acoustic wave induced cavitation technology\",\"authors\":\"Ehsan Seyfali ,&nbsp;Mohammad Hadi Khoshtaghaza ,&nbsp;Konstantina Sfyra ,&nbsp;Lars Wiking\",\"doi\":\"10.1016/j.jfoodeng.2025.112580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The present study demonstrated that acoustic wave-induced cavitation generation (AWICG, 100 Hz, 100 % amplitude, 20 W, 5 s) provides a promising alternative to high-intensity ultrasound (HIU, 24 kHz, 7 mm horn, 100 % amplitude, 200 W, 5 s) for the crystallization of anhydrous milk fat. AWICG significantly accelerated crystallization compared to the control at 25 °C. Both treatments reduced crystal size and decreased the hardness of the final product. Notably, AWICG demonstrated a substantial advantage in energy efficiency, consuming 60.9 % less energy than HIU. The findings indicate that AWICG, which employs the advantages of resonant Faraday wave excitation, presents a promising energy-efficient alternative for AMF processing, with the potential for enhanced product quality and sustainability.</div></div>\",\"PeriodicalId\":359,\"journal\":{\"name\":\"Journal of Food Engineering\",\"volume\":\"397 \",\"pages\":\"Article 112580\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0260877425001153\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877425001153","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究表明,声波诱导空化(AWICG, 100 Hz, 100%振幅,20 W, 5 s)为无水乳脂结晶提供了一种有前途的替代高强度超声(HIU, 24 kHz, 7 mm角,100%振幅,200 W, 5 s)。与对照组相比,AWICG在25°C时显著加速了结晶。这两种处理都减小了晶体尺寸,降低了最终产品的硬度。值得注意的是,AWICG在能源效率方面表现出了巨大的优势,消耗的能源比HIU少60.9%。研究结果表明,AWICG利用谐振法拉第波激发的优势,为AMF加工提供了一种有前途的节能替代方案,具有提高产品质量和可持续性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating crystallization of anhydrous milk fat using acoustic wave induced cavitation technology
The present study demonstrated that acoustic wave-induced cavitation generation (AWICG, 100 Hz, 100 % amplitude, 20 W, 5 s) provides a promising alternative to high-intensity ultrasound (HIU, 24 kHz, 7 mm horn, 100 % amplitude, 200 W, 5 s) for the crystallization of anhydrous milk fat. AWICG significantly accelerated crystallization compared to the control at 25 °C. Both treatments reduced crystal size and decreased the hardness of the final product. Notably, AWICG demonstrated a substantial advantage in energy efficiency, consuming 60.9 % less energy than HIU. The findings indicate that AWICG, which employs the advantages of resonant Faraday wave excitation, presents a promising energy-efficient alternative for AMF processing, with the potential for enhanced product quality and sustainability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Food Engineering
Journal of Food Engineering 工程技术-工程:化工
CiteScore
11.80
自引率
5.50%
发文量
275
审稿时长
24 days
期刊介绍: The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including: Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes. Accounts of food engineering achievements are of particular value.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信