极大振荡粗糙奇异积分算子的稀疏界

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Surjeet Singh Choudhary , Saurabh Shrivastava , Kalachand Shuin
{"title":"极大振荡粗糙奇异积分算子的稀疏界","authors":"Surjeet Singh Choudhary ,&nbsp;Saurabh Shrivastava ,&nbsp;Kalachand Shuin","doi":"10.1016/j.bulsci.2025.103612","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove sparse bounds for the maximal oscillatory rough singular integral operator<span><span><span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mo>⁎</mo></mrow><mrow><mi>P</mi></mrow></msubsup><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mi>sup</mi><mrow><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></mrow></munder><mo>⁡</mo><mrow><mo>|</mo><munder><mo>∫</mo><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo><mo>&gt;</mo><mi>ϵ</mi></mrow></munder><msup><mrow><mi>e</mi></mrow><mrow><mi>ι</mi><mi>P</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></msup><mfrac><mrow><mi>Ω</mi><mo>(</mo><mo>(</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>)</mo><mo>/</mo><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo><mo>)</mo></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo><mi>d</mi><mi>y</mi><mo>|</mo></mrow><mo>,</mo></math></span></span></span> where <span><math><mi>P</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> is a real-valued polynomial on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <span><math><mi>Ω</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is a homogeneous function of degree zero with <span><math><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><mi>Ω</mi><mo>(</mo><mi>θ</mi><mo>)</mo><mspace></mspace><mi>d</mi><mi>θ</mi><mo>=</mo><mn>0</mn></math></span>. This allows us to conclude weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-estimates for the operator <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mo>⁎</mo></mrow><mrow><mi>P</mi></mrow></msubsup></math></span>. Moreover, the norm <span><math><msub><mrow><mo>‖</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mo>⁎</mo></mrow><mrow><mi>P</mi></mrow></msubsup><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>ω</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>ω</mi><mo>)</mo></mrow></msub></math></span> depends only on the total degree of the polynomial <span><math><mi>P</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>, but not on the coefficients of <span><math><mi>P</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>. Finally, we will show that these techniques also apply to obtain sparse bounds for oscillatory rough singular integral operator <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi></mrow><mrow><mi>P</mi></mrow></msubsup></math></span> for <span><math><mi>Ω</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span>, <span><math><mn>1</mn><mo>&lt;</mo><mi>q</mi><mo>≤</mo><mo>∞</mo></math></span>.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"201 ","pages":"Article 103612"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse bounds for maximal oscillatory rough singular integral operators\",\"authors\":\"Surjeet Singh Choudhary ,&nbsp;Saurabh Shrivastava ,&nbsp;Kalachand Shuin\",\"doi\":\"10.1016/j.bulsci.2025.103612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we prove sparse bounds for the maximal oscillatory rough singular integral operator<span><span><span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mo>⁎</mo></mrow><mrow><mi>P</mi></mrow></msubsup><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mi>sup</mi><mrow><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></mrow></munder><mo>⁡</mo><mrow><mo>|</mo><munder><mo>∫</mo><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo><mo>&gt;</mo><mi>ϵ</mi></mrow></munder><msup><mrow><mi>e</mi></mrow><mrow><mi>ι</mi><mi>P</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></msup><mfrac><mrow><mi>Ω</mi><mo>(</mo><mo>(</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>)</mo><mo>/</mo><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo><mo>)</mo></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo><mi>d</mi><mi>y</mi><mo>|</mo></mrow><mo>,</mo></math></span></span></span> where <span><math><mi>P</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> is a real-valued polynomial on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <span><math><mi>Ω</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is a homogeneous function of degree zero with <span><math><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><mi>Ω</mi><mo>(</mo><mi>θ</mi><mo>)</mo><mspace></mspace><mi>d</mi><mi>θ</mi><mo>=</mo><mn>0</mn></math></span>. This allows us to conclude weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-estimates for the operator <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mo>⁎</mo></mrow><mrow><mi>P</mi></mrow></msubsup></math></span>. Moreover, the norm <span><math><msub><mrow><mo>‖</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mo>⁎</mo></mrow><mrow><mi>P</mi></mrow></msubsup><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>ω</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>ω</mi><mo>)</mo></mrow></msub></math></span> depends only on the total degree of the polynomial <span><math><mi>P</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>, but not on the coefficients of <span><math><mi>P</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>. Finally, we will show that these techniques also apply to obtain sparse bounds for oscillatory rough singular integral operator <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi></mrow><mrow><mi>P</mi></mrow></msubsup></math></span> for <span><math><mi>Ω</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span>, <span><math><mn>1</mn><mo>&lt;</mo><mi>q</mi><mo>≤</mo><mo>∞</mo></math></span>.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"201 \",\"pages\":\"Article 103612\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725000387\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000387","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了最大振荡粗糙奇异积分operatorTΩ, Pf(x):=supϵ>0 (x,y) |x - y|>;ϵeιP(x,y)Ω((x - y)/|x - y|)|x - y|nf(y)dy|的稀疏界,其中P(x,y)是Rn×Rn上的实值多项式,Ω∈L∞(Sn - 1)是∫Sn - 1Ω(θ)dθ=0的零次齐次函数。这允许我们得出算子TΩ, P的加权lp估计。此外,范数‖TΩ, P‖Lp(ω)→Lp(ω)仅与多项式P(x,y)的总度有关,而与P(x,y)的系数无关。最后,我们将证明这些技术也适用于获得振荡粗糙奇异积分算子TΩP对于Ω∈Lq(Sn−1),1<;q≤∞的稀疏界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sparse bounds for maximal oscillatory rough singular integral operators
In this paper, we prove sparse bounds for the maximal oscillatory rough singular integral operatorTΩ,Pf(x):=supϵ>0||xy|>ϵeιP(x,y)Ω((xy)/|xy|)|xy|nf(y)dy|, where P(x,y) is a real-valued polynomial on Rn×Rn and ΩL(Sn1) is a homogeneous function of degree zero with Sn1Ω(θ)dθ=0. This allows us to conclude weighted Lp-estimates for the operator TΩ,P. Moreover, the norm TΩ,PLp(ω)Lp(ω) depends only on the total degree of the polynomial P(x,y), but not on the coefficients of P(x,y). Finally, we will show that these techniques also apply to obtain sparse bounds for oscillatory rough singular integral operator TΩP for ΩLq(Sn1), 1<q.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信