{"title":"极大振荡粗糙奇异积分算子的稀疏界","authors":"Surjeet Singh Choudhary , Saurabh Shrivastava , Kalachand Shuin","doi":"10.1016/j.bulsci.2025.103612","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove sparse bounds for the maximal oscillatory rough singular integral operator<span><span><span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mo>⁎</mo></mrow><mrow><mi>P</mi></mrow></msubsup><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mi>sup</mi><mrow><mi>ϵ</mi><mo>></mo><mn>0</mn></mrow></munder><mo></mo><mrow><mo>|</mo><munder><mo>∫</mo><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo><mo>></mo><mi>ϵ</mi></mrow></munder><msup><mrow><mi>e</mi></mrow><mrow><mi>ι</mi><mi>P</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></msup><mfrac><mrow><mi>Ω</mi><mo>(</mo><mo>(</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>)</mo><mo>/</mo><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo><mo>)</mo></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo><mi>d</mi><mi>y</mi><mo>|</mo></mrow><mo>,</mo></math></span></span></span> where <span><math><mi>P</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> is a real-valued polynomial on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <span><math><mi>Ω</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is a homogeneous function of degree zero with <span><math><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><mi>Ω</mi><mo>(</mo><mi>θ</mi><mo>)</mo><mspace></mspace><mi>d</mi><mi>θ</mi><mo>=</mo><mn>0</mn></math></span>. This allows us to conclude weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-estimates for the operator <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mo>⁎</mo></mrow><mrow><mi>P</mi></mrow></msubsup></math></span>. Moreover, the norm <span><math><msub><mrow><mo>‖</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mo>⁎</mo></mrow><mrow><mi>P</mi></mrow></msubsup><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>ω</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>ω</mi><mo>)</mo></mrow></msub></math></span> depends only on the total degree of the polynomial <span><math><mi>P</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>, but not on the coefficients of <span><math><mi>P</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>. Finally, we will show that these techniques also apply to obtain sparse bounds for oscillatory rough singular integral operator <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi></mrow><mrow><mi>P</mi></mrow></msubsup></math></span> for <span><math><mi>Ω</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span>, <span><math><mn>1</mn><mo><</mo><mi>q</mi><mo>≤</mo><mo>∞</mo></math></span>.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"201 ","pages":"Article 103612"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse bounds for maximal oscillatory rough singular integral operators\",\"authors\":\"Surjeet Singh Choudhary , Saurabh Shrivastava , Kalachand Shuin\",\"doi\":\"10.1016/j.bulsci.2025.103612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we prove sparse bounds for the maximal oscillatory rough singular integral operator<span><span><span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mo>⁎</mo></mrow><mrow><mi>P</mi></mrow></msubsup><mi>f</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>:</mo><mo>=</mo><munder><mi>sup</mi><mrow><mi>ϵ</mi><mo>></mo><mn>0</mn></mrow></munder><mo></mo><mrow><mo>|</mo><munder><mo>∫</mo><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo><mo>></mo><mi>ϵ</mi></mrow></munder><msup><mrow><mi>e</mi></mrow><mrow><mi>ι</mi><mi>P</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></msup><mfrac><mrow><mi>Ω</mi><mo>(</mo><mo>(</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>)</mo><mo>/</mo><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><mo>|</mo><mo>)</mo></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>n</mi></mrow></msup></mrow></mfrac><mi>f</mi><mo>(</mo><mi>y</mi><mo>)</mo><mi>d</mi><mi>y</mi><mo>|</mo></mrow><mo>,</mo></math></span></span></span> where <span><math><mi>P</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span> is a real-valued polynomial on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>×</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> and <span><math><mi>Ω</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span> is a homogeneous function of degree zero with <span><math><msub><mrow><mo>∫</mo></mrow><mrow><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup></mrow></msub><mi>Ω</mi><mo>(</mo><mi>θ</mi><mo>)</mo><mspace></mspace><mi>d</mi><mi>θ</mi><mo>=</mo><mn>0</mn></math></span>. This allows us to conclude weighted <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-estimates for the operator <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mo>⁎</mo></mrow><mrow><mi>P</mi></mrow></msubsup></math></span>. Moreover, the norm <span><math><msub><mrow><mo>‖</mo><msubsup><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi><mo>,</mo><mo>⁎</mo></mrow><mrow><mi>P</mi></mrow></msubsup><mo>‖</mo></mrow><mrow><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>ω</mi><mo>)</mo><mo>→</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>(</mo><mi>ω</mi><mo>)</mo></mrow></msub></math></span> depends only on the total degree of the polynomial <span><math><mi>P</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>, but not on the coefficients of <span><math><mi>P</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></math></span>. Finally, we will show that these techniques also apply to obtain sparse bounds for oscillatory rough singular integral operator <span><math><msubsup><mrow><mi>T</mi></mrow><mrow><mi>Ω</mi></mrow><mrow><mi>P</mi></mrow></msubsup></math></span> for <span><math><mi>Ω</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span>, <span><math><mn>1</mn><mo><</mo><mi>q</mi><mo>≤</mo><mo>∞</mo></math></span>.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"201 \",\"pages\":\"Article 103612\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725000387\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000387","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Sparse bounds for maximal oscillatory rough singular integral operators
In this paper, we prove sparse bounds for the maximal oscillatory rough singular integral operator where is a real-valued polynomial on and is a homogeneous function of degree zero with . This allows us to conclude weighted -estimates for the operator . Moreover, the norm depends only on the total degree of the polynomial , but not on the coefficients of . Finally, we will show that these techniques also apply to obtain sparse bounds for oscillatory rough singular integral operator for , .