{"title":"q同余意味着Beukers-Van Hamme同余","authors":"Victor J.W. Guo , Ji-Cai Liu","doi":"10.1016/j.bulsci.2025.103615","DOIUrl":null,"url":null,"abstract":"<div><div>By making use of Andrews' terminating <em>q</em>-analogue of Watson's formula and a double sum identity, we give a <em>q</em>-analogue of the following congruence: for any prime <span><math><mi>p</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>,<span><span><span><math><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></munderover><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>+</mo><mi>k</mi></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mspace></mspace><mo>≡</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></msup></mrow></mfrac><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>4</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>.</mo></math></span></span></span> In view of the Chowla–Dwork–Evans congruence, our <em>q</em>-congruence may somewhat be regarded as a <em>q</em>-analogue of the Beukers–Van Hamme congruence:<span><span><span><math><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></munderover><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>+</mo><mi>k</mi></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mspace></mspace><mo>≡</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>4</mn></mrow></msup><mrow><mo>(</mo><mn>2</mn><mi>a</mi><mo>−</mo><mfrac><mrow><mi>p</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac><mo>)</mo></mrow><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mi>p</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>Z</mi></math></span> and <span><math><mi>a</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"201 ","pages":"Article 103615"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A q-congruence implying the Beukers–Van Hamme congruence\",\"authors\":\"Victor J.W. Guo , Ji-Cai Liu\",\"doi\":\"10.1016/j.bulsci.2025.103615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>By making use of Andrews' terminating <em>q</em>-analogue of Watson's formula and a double sum identity, we give a <em>q</em>-analogue of the following congruence: for any prime <span><math><mi>p</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>,<span><span><span><math><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></munderover><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>+</mo><mi>k</mi></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mspace></mspace><mo>≡</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></msup></mrow></mfrac><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>4</mn></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>.</mo></math></span></span></span> In view of the Chowla–Dwork–Evans congruence, our <em>q</em>-congruence may somewhat be regarded as a <em>q</em>-analogue of the Beukers–Van Hamme congruence:<span><span><span><math><munderover><mo>∑</mo><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></munderover><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>+</mo><mi>k</mi></mrow></mtd></mtr><mtr><mtd><mi>k</mi></mtd></mtr></mtable><mo>)</mo></mrow><mspace></mspace><mo>≡</mo><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>4</mn></mrow></msup><mrow><mo>(</mo><mn>2</mn><mi>a</mi><mo>−</mo><mfrac><mrow><mi>p</mi></mrow><mrow><mn>2</mn><mi>a</mi></mrow></mfrac><mo>)</mo></mrow><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo><mo>,</mo></math></span></span></span> where <span><math><mi>p</mi><mo>=</mo><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> with <span><math><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mi>Z</mi></math></span> and <span><math><mi>a</mi><mo>≡</mo><mn>1</mn><mspace></mspace><mo>(</mo><mrow><mi>mod</mi></mrow><mspace></mspace><mn>4</mn><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"201 \",\"pages\":\"Article 103615\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725000417\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000417","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
利用Andrews对Watson公式的终止q-类比和二重和恒等式,我们给出了以下同余的q-类比:对于任意素数p≡1(mod4),∑k=0(p−1)/2((p−1)/2k)((p−1)/2+kk)≡12(p−1)/2((p−1)/2(p−1)/4)(modp2)。鉴于Chowla-Dwork-Evans同余,我们的q-同余在某种程度上可以看作是beukes - van Hamme同余的q-类比:∑k=0(p−1)/2((p−1)/2k)((p−1)/2+kk)≡(−1)(p−1)/4(2a−p2a)(modp2),其中p=a2+b2, a,b∈Z, a≡1(mod4)。
A q-congruence implying the Beukers–Van Hamme congruence
By making use of Andrews' terminating q-analogue of Watson's formula and a double sum identity, we give a q-analogue of the following congruence: for any prime , In view of the Chowla–Dwork–Evans congruence, our q-congruence may somewhat be regarded as a q-analogue of the Beukers–Van Hamme congruence: where with and .