{"title":"可分解阿贝尔g曲线及其特殊子变种","authors":"Irene Spelta , Carolina Tamborini","doi":"10.1016/j.bulsci.2025.103616","DOIUrl":null,"url":null,"abstract":"<div><div>We consider families of abelian Galois coverings of the line. When the Jacobian of the general element is totally decomposable, i.e., is isogenous to a product of elliptic curves, we prove that they yield special subvarieties of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> if and only if a numerical condition holds, which in the general case is only known to be sufficient.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"201 ","pages":"Article 103616"},"PeriodicalIF":0.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposable abelian G-curves and special subvarieties\",\"authors\":\"Irene Spelta , Carolina Tamborini\",\"doi\":\"10.1016/j.bulsci.2025.103616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider families of abelian Galois coverings of the line. When the Jacobian of the general element is totally decomposable, i.e., is isogenous to a product of elliptic curves, we prove that they yield special subvarieties of <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> if and only if a numerical condition holds, which in the general case is only known to be sufficient.</div></div>\",\"PeriodicalId\":55313,\"journal\":{\"name\":\"Bulletin des Sciences Mathematiques\",\"volume\":\"201 \",\"pages\":\"Article 103616\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin des Sciences Mathematiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0007449725000429\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007449725000429","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Decomposable abelian G-curves and special subvarieties
We consider families of abelian Galois coverings of the line. When the Jacobian of the general element is totally decomposable, i.e., is isogenous to a product of elliptic curves, we prove that they yield special subvarieties of if and only if a numerical condition holds, which in the general case is only known to be sufficient.