二部图中星因子的一些谱条件

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Sizhong Zhou
{"title":"二部图中星因子的一些谱条件","authors":"Sizhong Zhou","doi":"10.1016/j.dam.2025.03.014","DOIUrl":null,"url":null,"abstract":"<div><div>A spanning subgraph <span><math><mi>F</mi></math></span> of <span><math><mi>G</mi></math></span> is called an <span><math><mi>F</mi></math></span>-factor if every component of <span><math><mi>F</mi></math></span> is isomorphic to some member of <span><math><mi>F</mi></math></span>, where <span><math><mi>F</mi></math></span> is a set of connected graphs. We denote by <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> the adjacency matrix of <span><math><mi>G</mi></math></span>, and by <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> the distance matrix of <span><math><mi>G</mi></math></span>. The largest eigenvalue of <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, denoted by <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is called the adjacency spectral radius of <span><math><mi>G</mi></math></span>. The largest eigenvalue of <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, denoted by <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is called the distance spectral radius of <span><math><mi>G</mi></math></span>. In this paper, we aim to provide two spectral conditions to ensure the existence of star-factors with given properties. Let <span><math><mi>G</mi></math></span> be a <span><math><mi>k</mi></math></span>-edge-connected bipartite graph with bipartition <span><math><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></math></span> and <span><math><mrow><mrow><mo>|</mo><mi>B</mi><mo>|</mo></mrow><mo>=</mo><mi>k</mi><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mo>=</mo><mi>k</mi><mi>n</mi></mrow></math></span>, where <span><math><mi>n</mi></math></span> is a sufficiently large positive integer. Then the following two results are true.</div><div>(i) If <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∇</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>, then <span><math><mi>G</mi></math></span> contains a star-factor <span><math><mi>F</mi></math></span> with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>k</mi></mrow></math></span> for any <span><math><mrow><mi>u</mi><mo>∈</mo><mi>A</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for any <span><math><mrow><mi>v</mi><mo>∈</mo><mi>B</mi></mrow></math></span>, unless <span><math><mrow><mi>G</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∇</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></math></span>.</div><div>(ii) If <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>μ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∇</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>, then <span><math><mi>G</mi></math></span> contains a star-factor <span><math><mi>F</mi></math></span> with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>k</mi></mrow></math></span> for any <span><math><mrow><mi>u</mi><mo>∈</mo><mi>A</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for any <span><math><mrow><mi>v</mi><mo>∈</mo><mi>B</mi></mrow></math></span>, unless <span><math><mrow><mi>G</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∇</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"369 ","pages":"Pages 124-130"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some spectral conditions for star-factors in bipartite graphs\",\"authors\":\"Sizhong Zhou\",\"doi\":\"10.1016/j.dam.2025.03.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A spanning subgraph <span><math><mi>F</mi></math></span> of <span><math><mi>G</mi></math></span> is called an <span><math><mi>F</mi></math></span>-factor if every component of <span><math><mi>F</mi></math></span> is isomorphic to some member of <span><math><mi>F</mi></math></span>, where <span><math><mi>F</mi></math></span> is a set of connected graphs. We denote by <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> the adjacency matrix of <span><math><mi>G</mi></math></span>, and by <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> the distance matrix of <span><math><mi>G</mi></math></span>. The largest eigenvalue of <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, denoted by <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is called the adjacency spectral radius of <span><math><mi>G</mi></math></span>. The largest eigenvalue of <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, denoted by <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is called the distance spectral radius of <span><math><mi>G</mi></math></span>. In this paper, we aim to provide two spectral conditions to ensure the existence of star-factors with given properties. Let <span><math><mi>G</mi></math></span> be a <span><math><mi>k</mi></math></span>-edge-connected bipartite graph with bipartition <span><math><mrow><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></mrow></math></span> and <span><math><mrow><mrow><mo>|</mo><mi>B</mi><mo>|</mo></mrow><mo>=</mo><mi>k</mi><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mo>=</mo><mi>k</mi><mi>n</mi></mrow></math></span>, where <span><math><mi>n</mi></math></span> is a sufficiently large positive integer. Then the following two results are true.</div><div>(i) If <span><math><mrow><mi>ρ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mi>ρ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∇</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>, then <span><math><mi>G</mi></math></span> contains a star-factor <span><math><mi>F</mi></math></span> with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>k</mi></mrow></math></span> for any <span><math><mrow><mi>u</mi><mo>∈</mo><mi>A</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for any <span><math><mrow><mi>v</mi><mo>∈</mo><mi>B</mi></mrow></math></span>, unless <span><math><mrow><mi>G</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∇</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></math></span>.</div><div>(ii) If <span><math><mrow><mi>μ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>μ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∇</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow></mrow></math></span>, then <span><math><mi>G</mi></math></span> contains a star-factor <span><math><mi>F</mi></math></span> with <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>=</mo><mi>k</mi></mrow></math></span> for any <span><math><mrow><mi>u</mi><mo>∈</mo><mi>A</mi></mrow></math></span> and <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>F</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span> for any <span><math><mrow><mi>v</mi><mo>∈</mo><mi>B</mi></mrow></math></span>, unless <span><math><mrow><mi>G</mi><mo>=</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn><mo>,</mo><mi>k</mi><mi>n</mi><mo>−</mo><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∇</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"369 \",\"pages\":\"Pages 124-130\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25001398\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001398","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

如果生成子图F (G)的每个分量都同构于F中的某个元素,则称为F因子,其中F是一组连通图。我们用A(G)表示G的邻接矩阵,用D(G)表示G的距离矩阵,用ρ(G)表示A(G)的最大特征值称为G的邻接谱半径,用μ(G)表示D(G)的最大特征值称为G的距离谱半径。本文旨在提供两个谱条件来保证具有给定性质的星因子存在。设G为两分(a,B)且|B|=k| a |=kn的k边连通二部图,其中n是一个足够大的正整数。那么以下两个结果是正确的:(i)如果ρ(G)≥ρ(Kn−1,Kn−k−1∇K1,k+1),则G包含一个星因子F,对于任意u∈a dF(u)=k,对于任意v∈B dF(v)=1,除非G=Kn−1,Kn−k−1∇K1,k+1。(ii)如果μ(G)≤μ(Kn−1,Kn−k−1∇K1,k+1),则G包含一个星因子F,对于任意u∈a dF(u)=k,对于任意v∈B dF(v)=1,除非G=Kn−1,Kn−k−1∇K1,k+1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some spectral conditions for star-factors in bipartite graphs
A spanning subgraph F of G is called an F-factor if every component of F is isomorphic to some member of F, where F is a set of connected graphs. We denote by A(G) the adjacency matrix of G, and by D(G) the distance matrix of G. The largest eigenvalue of A(G), denoted by ρ(G), is called the adjacency spectral radius of G. The largest eigenvalue of D(G), denoted by μ(G), is called the distance spectral radius of G. In this paper, we aim to provide two spectral conditions to ensure the existence of star-factors with given properties. Let G be a k-edge-connected bipartite graph with bipartition (A,B) and |B|=k|A|=kn, where n is a sufficiently large positive integer. Then the following two results are true.
(i) If ρ(G)ρ(Kn1,knk1K1,k+1), then G contains a star-factor F with dF(u)=k for any uA and dF(v)=1 for any vB, unless G=Kn1,knk1K1,k+1.
(ii) If μ(G)μ(Kn1,knk1K1,k+1), then G contains a star-factor F with dF(u)=k for any uA and dF(v)=1 for any vB, unless G=Kn1,knk1K1,k+1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信