锂离子诱导的应力和电极材料的损伤:电流变化的影响

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yong Li , Lili Dai , Wei Feng , Kai Zhang , Fuqian Yang
{"title":"锂离子诱导的应力和电极材料的损伤:电流变化的影响","authors":"Yong Li ,&nbsp;Lili Dai ,&nbsp;Wei Feng ,&nbsp;Kai Zhang ,&nbsp;Fuqian Yang","doi":"10.1016/j.mechmat.2025.105332","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-ion batteries likely experience different structural evolution during electrochemical charging and discharging under dynamic environments from the corresponding one under “conventional” cycling conditions. In this work, we introduce a time-dependent influx in the analysis of the evolution of stress, strain, mechanical and chemical damages under galvanostatic operation. The time-dependent term is presented in two different forms – one in the form of a set of cosine terms and the other in the form of a Gaussian pulse. For the time-dependent term in the form of a single cosine term, both the angular frequency and amplitude contribute to the evolution of stress, strain, mechanical and chemical damages. The cosine term with a larger amplitude and/or a smaller angular frequency has a larger effect on the structural integrity of the electrode materials in LIBs than the corresponding one with a smaller amplitude and/or a larger angular frequency. For the time-dependent term in the form of a Gaussian pulse, the degradation of LIBs is dependent on the energy coefficient of the Gaussian pulse. Increasing the energy coefficient of the Gaussian pulse leads to the increase of mechanical and chemical damages.</div></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":"205 ","pages":"Article 105332"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lithiation-induced stress and damage in electrode materials: Effects of current variations\",\"authors\":\"Yong Li ,&nbsp;Lili Dai ,&nbsp;Wei Feng ,&nbsp;Kai Zhang ,&nbsp;Fuqian Yang\",\"doi\":\"10.1016/j.mechmat.2025.105332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lithium-ion batteries likely experience different structural evolution during electrochemical charging and discharging under dynamic environments from the corresponding one under “conventional” cycling conditions. In this work, we introduce a time-dependent influx in the analysis of the evolution of stress, strain, mechanical and chemical damages under galvanostatic operation. The time-dependent term is presented in two different forms – one in the form of a set of cosine terms and the other in the form of a Gaussian pulse. For the time-dependent term in the form of a single cosine term, both the angular frequency and amplitude contribute to the evolution of stress, strain, mechanical and chemical damages. The cosine term with a larger amplitude and/or a smaller angular frequency has a larger effect on the structural integrity of the electrode materials in LIBs than the corresponding one with a smaller amplitude and/or a larger angular frequency. For the time-dependent term in the form of a Gaussian pulse, the degradation of LIBs is dependent on the energy coefficient of the Gaussian pulse. Increasing the energy coefficient of the Gaussian pulse leads to the increase of mechanical and chemical damages.</div></div>\",\"PeriodicalId\":18296,\"journal\":{\"name\":\"Mechanics of Materials\",\"volume\":\"205 \",\"pages\":\"Article 105332\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167663625000948\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663625000948","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锂离子电池在动态环境下的电化学充放电过程可能会经历与“常规”循环条件下不同的结构演变。在这项工作中,我们在恒流操作下的应力、应变、机械和化学损伤的演变分析中引入了时间相关的内流。时间相关项以两种不同的形式呈现-一种以余弦项的形式呈现,另一种以高斯脉冲的形式呈现。对于单一余弦项形式的时间相关项,角频率和幅值都对应力、应变、力学和化学损伤的演化有贡献。振幅较大和/或角频率较小的余弦项比振幅较小和/或角频率较大的余弦项对电极材料结构完整性的影响更大。对于高斯脉冲形式的时变项,锂离子电池的退化取决于高斯脉冲的能量系数。随着高斯脉冲能量系数的增大,材料的机械损伤和化学损伤增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lithiation-induced stress and damage in electrode materials: Effects of current variations
Lithium-ion batteries likely experience different structural evolution during electrochemical charging and discharging under dynamic environments from the corresponding one under “conventional” cycling conditions. In this work, we introduce a time-dependent influx in the analysis of the evolution of stress, strain, mechanical and chemical damages under galvanostatic operation. The time-dependent term is presented in two different forms – one in the form of a set of cosine terms and the other in the form of a Gaussian pulse. For the time-dependent term in the form of a single cosine term, both the angular frequency and amplitude contribute to the evolution of stress, strain, mechanical and chemical damages. The cosine term with a larger amplitude and/or a smaller angular frequency has a larger effect on the structural integrity of the electrode materials in LIBs than the corresponding one with a smaller amplitude and/or a larger angular frequency. For the time-dependent term in the form of a Gaussian pulse, the degradation of LIBs is dependent on the energy coefficient of the Gaussian pulse. Increasing the energy coefficient of the Gaussian pulse leads to the increase of mechanical and chemical damages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Materials
Mechanics of Materials 工程技术-材料科学:综合
CiteScore
7.60
自引率
5.10%
发文量
243
审稿时长
46 days
期刊介绍: Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信