嵌入式机器视觉传感器,具有便携式成像装置,高耐用性

IF 9.6 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Pengfei Wu , Han Yuan , Bingchuan Bai , Bo Lu , Weijie Li , Xuefeng Zhao
{"title":"嵌入式机器视觉传感器,具有便携式成像装置,高耐用性","authors":"Pengfei Wu ,&nbsp;Han Yuan ,&nbsp;Bingchuan Bai ,&nbsp;Bo Lu ,&nbsp;Weijie Li ,&nbsp;Xuefeng Zhao","doi":"10.1016/j.autcon.2025.106143","DOIUrl":null,"url":null,"abstract":"<div><div>Machine vision sensors face challenges in automating the monitoring of internal structural damage and deformation, with limited lifespan and resolution accuracy. This paper develops a high-durable machine vision strain sensor, MISS-Silica. The sensor's durability is enhanced through materials, processes, and algorithms, ensuring its lifespan aligns with that of the structure. It combines an endoscope with a smartphone, eliminating the need for fixed camera positioning, and enables embedded strain measurement. With sub-pixel accuracy, the sensor reduces reliance on camera resolution and has a measurement range of 0.05<span><math><mi>ε</mi></math></span>, covering all stages from loading to failure. The results demonstrate that MISS-Silica provides a reliable, accurate, and durable solution for long-term structural health monitoring. Future research will explore its application in diverse environments, refine miniaturization, and improve real-time, large-scale monitoring capabilities.</div></div>","PeriodicalId":8660,"journal":{"name":"Automation in Construction","volume":"174 ","pages":"Article 106143"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedded machine vision sensor with portable imaging device and high durability\",\"authors\":\"Pengfei Wu ,&nbsp;Han Yuan ,&nbsp;Bingchuan Bai ,&nbsp;Bo Lu ,&nbsp;Weijie Li ,&nbsp;Xuefeng Zhao\",\"doi\":\"10.1016/j.autcon.2025.106143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Machine vision sensors face challenges in automating the monitoring of internal structural damage and deformation, with limited lifespan and resolution accuracy. This paper develops a high-durable machine vision strain sensor, MISS-Silica. The sensor's durability is enhanced through materials, processes, and algorithms, ensuring its lifespan aligns with that of the structure. It combines an endoscope with a smartphone, eliminating the need for fixed camera positioning, and enables embedded strain measurement. With sub-pixel accuracy, the sensor reduces reliance on camera resolution and has a measurement range of 0.05<span><math><mi>ε</mi></math></span>, covering all stages from loading to failure. The results demonstrate that MISS-Silica provides a reliable, accurate, and durable solution for long-term structural health monitoring. Future research will explore its application in diverse environments, refine miniaturization, and improve real-time, large-scale monitoring capabilities.</div></div>\",\"PeriodicalId\":8660,\"journal\":{\"name\":\"Automation in Construction\",\"volume\":\"174 \",\"pages\":\"Article 106143\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automation in Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926580525001839\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation in Construction","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926580525001839","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

机器视觉传感器在内部结构损伤和变形的自动化监测方面面临挑战,其使用寿命和分辨率精度有限。本文开发了一种高耐用的机器视觉应变传感器MISS-Silica。传感器的耐用性通过材料、工艺和算法得到增强,确保其寿命与结构的寿命一致。它结合了内窥镜和智能手机,消除了固定相机定位的需要,并实现了嵌入式应变测量。该传感器具有亚像素精度,减少了对相机分辨率的依赖,测量范围为0.05ε,涵盖了从加载到故障的所有阶段。结果表明,MISS-Silica为长期结构健康监测提供了可靠、准确和持久的解决方案。未来的研究将探索其在不同环境中的应用,改进小型化,提高实时、大规模监测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedded machine vision sensor with portable imaging device and high durability
Machine vision sensors face challenges in automating the monitoring of internal structural damage and deformation, with limited lifespan and resolution accuracy. This paper develops a high-durable machine vision strain sensor, MISS-Silica. The sensor's durability is enhanced through materials, processes, and algorithms, ensuring its lifespan aligns with that of the structure. It combines an endoscope with a smartphone, eliminating the need for fixed camera positioning, and enables embedded strain measurement. With sub-pixel accuracy, the sensor reduces reliance on camera resolution and has a measurement range of 0.05ε, covering all stages from loading to failure. The results demonstrate that MISS-Silica provides a reliable, accurate, and durable solution for long-term structural health monitoring. Future research will explore its application in diverse environments, refine miniaturization, and improve real-time, large-scale monitoring capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Automation in Construction
Automation in Construction 工程技术-工程:土木
CiteScore
19.20
自引率
16.50%
发文量
563
审稿时长
8.5 months
期刊介绍: Automation in Construction is an international journal that focuses on publishing original research papers related to the use of Information Technologies in various aspects of the construction industry. The journal covers topics such as design, engineering, construction technologies, and the maintenance and management of constructed facilities. The scope of Automation in Construction is extensive and covers all stages of the construction life cycle. This includes initial planning and design, construction of the facility, operation and maintenance, as well as the eventual dismantling and recycling of buildings and engineering structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信