多部分场景中的纠缠层次

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Hui Li , Ting Gao , Fengli Yan
{"title":"多部分场景中的纠缠层次","authors":"Hui Li ,&nbsp;Ting Gao ,&nbsp;Fengli Yan","doi":"10.1016/j.cjph.2025.02.039","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate the hierarchical structure of the <span><math><mi>n</mi></math></span>-partite quantum states. We present a whole set of hierarchical quantifications as a method of characterizing quantum states, which go beyond genuine multipartite entanglement measures and allow for fine identification among distinct entanglement contributions. This kind of quantifications, termed <span><math><mi>k</mi></math></span>-GM concurrence, can unambiguously classify entangled states into <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span> distinct classes from the perspective of <span><math><mi>k</mi></math></span>-nonseparability with <span><math><mi>k</mi></math></span> running from <span><math><mi>n</mi></math></span> to 2, and comply with the axiomatic conditions of an entanglement measure. Compared to <span><math><mi>k</mi></math></span>-ME concurrence <span><span>[Phys. Rev. A 86 (2012) 062323]</span><svg><path></path></svg></span>, the hierarchical measures proposed by us embody advantages in distinguishing same class entangled states and measuring continuity. In addition, we establish the relation between <span><math><mi>k</mi></math></span>-ME concurrence and <span><math><mi>k</mi></math></span>-GM concurrence, and further derive a strong lower bound on the <span><math><mi>k</mi></math></span>-GM concurrence by exploiting the permutationally invariant part of a quantum state. Furthermore, we parametrize <span><math><mi>k</mi></math></span>-GM concurrence to obtain two more general and complete categories of quantifications, <span><math><mi>q</mi></math></span>-<span><math><mi>k</mi></math></span>-GM concurrence <span><math><mrow><mo>(</mo><mi>q</mi><mo>&gt;</mo><mn>1</mn><mo>)</mo></mrow></math></span> and <span><math><mi>α</mi></math></span>-<span><math><mi>k</mi></math></span>-GM concurrence <span><math><mrow><mo>(</mo><mn>0</mn><mo>≤</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn><mo>)</mo></mrow></math></span>, which obey the properties enjoyed by <span><math><mi>k</mi></math></span>-GM concurrence as well. In particular, <span><math><mi>α</mi></math></span>-2-GM concurrence <span><math><mrow><mo>(</mo><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn><mo>)</mo></mrow></math></span> determines that the GHZ state and the <span><math><mi>W</mi></math></span> state belong to the same hierarchy, and satisfies the requirement that the GHZ state is more entangled than the <span><math><mi>W</mi></math></span> state in multiqubit systems.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"95 ","pages":"Pages 337-347"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Entanglement hierarchies in multipartite scenarios\",\"authors\":\"Hui Li ,&nbsp;Ting Gao ,&nbsp;Fengli Yan\",\"doi\":\"10.1016/j.cjph.2025.02.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we investigate the hierarchical structure of the <span><math><mi>n</mi></math></span>-partite quantum states. We present a whole set of hierarchical quantifications as a method of characterizing quantum states, which go beyond genuine multipartite entanglement measures and allow for fine identification among distinct entanglement contributions. This kind of quantifications, termed <span><math><mi>k</mi></math></span>-GM concurrence, can unambiguously classify entangled states into <span><math><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></math></span> distinct classes from the perspective of <span><math><mi>k</mi></math></span>-nonseparability with <span><math><mi>k</mi></math></span> running from <span><math><mi>n</mi></math></span> to 2, and comply with the axiomatic conditions of an entanglement measure. Compared to <span><math><mi>k</mi></math></span>-ME concurrence <span><span>[Phys. Rev. A 86 (2012) 062323]</span><svg><path></path></svg></span>, the hierarchical measures proposed by us embody advantages in distinguishing same class entangled states and measuring continuity. In addition, we establish the relation between <span><math><mi>k</mi></math></span>-ME concurrence and <span><math><mi>k</mi></math></span>-GM concurrence, and further derive a strong lower bound on the <span><math><mi>k</mi></math></span>-GM concurrence by exploiting the permutationally invariant part of a quantum state. Furthermore, we parametrize <span><math><mi>k</mi></math></span>-GM concurrence to obtain two more general and complete categories of quantifications, <span><math><mi>q</mi></math></span>-<span><math><mi>k</mi></math></span>-GM concurrence <span><math><mrow><mo>(</mo><mi>q</mi><mo>&gt;</mo><mn>1</mn><mo>)</mo></mrow></math></span> and <span><math><mi>α</mi></math></span>-<span><math><mi>k</mi></math></span>-GM concurrence <span><math><mrow><mo>(</mo><mn>0</mn><mo>≤</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn><mo>)</mo></mrow></math></span>, which obey the properties enjoyed by <span><math><mi>k</mi></math></span>-GM concurrence as well. In particular, <span><math><mi>α</mi></math></span>-2-GM concurrence <span><math><mrow><mo>(</mo><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn><mo>)</mo></mrow></math></span> determines that the GHZ state and the <span><math><mi>W</mi></math></span> state belong to the same hierarchy, and satisfies the requirement that the GHZ state is more entangled than the <span><math><mi>W</mi></math></span> state in multiqubit systems.</div></div>\",\"PeriodicalId\":10340,\"journal\":{\"name\":\"Chinese Journal of Physics\",\"volume\":\"95 \",\"pages\":\"Pages 337-347\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0577907325000851\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907325000851","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了n部量子态的层次结构。我们提出了一整套层次量化作为表征量子态的方法,它超越了真正的多方纠缠度量,并允许在不同的纠缠贡献之间进行精细识别。这种量化被称为k- gm并发,从k-不可分性的角度将纠缠态明确地划分为(n−1)个不同的类,且k从n到2运行,并且符合纠缠测度的公理化条件。与k-ME并发相比[物理学]。Rev. A 86(2012) 062323],我们提出的分层测度在区分同类纠缠态和测量连续性方面体现了优势。此外,我们建立了k-ME并发和k-GM并发之间的关系,并进一步利用量子态的排列不变部分推导出k-GM并发的强下界。进一步,我们将k-GM并发参数化,得到了两个更一般、更完备的量化范畴q-k-GM并发(q>1)和α-k-GM并发(0≤α<1),它们也符合k-GM并发所具有的性质。特别是α-2-GM并发性(0<α<1)决定了GHZ态和W态属于同一层次,满足了多量子位系统中GHZ态比W态纠缠度更高的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Entanglement hierarchies in multipartite scenarios

Entanglement hierarchies in multipartite scenarios
In this paper, we investigate the hierarchical structure of the n-partite quantum states. We present a whole set of hierarchical quantifications as a method of characterizing quantum states, which go beyond genuine multipartite entanglement measures and allow for fine identification among distinct entanglement contributions. This kind of quantifications, termed k-GM concurrence, can unambiguously classify entangled states into (n1) distinct classes from the perspective of k-nonseparability with k running from n to 2, and comply with the axiomatic conditions of an entanglement measure. Compared to k-ME concurrence [Phys. Rev. A 86 (2012) 062323], the hierarchical measures proposed by us embody advantages in distinguishing same class entangled states and measuring continuity. In addition, we establish the relation between k-ME concurrence and k-GM concurrence, and further derive a strong lower bound on the k-GM concurrence by exploiting the permutationally invariant part of a quantum state. Furthermore, we parametrize k-GM concurrence to obtain two more general and complete categories of quantifications, q-k-GM concurrence (q>1) and α-k-GM concurrence (0α<1), which obey the properties enjoyed by k-GM concurrence as well. In particular, α-2-GM concurrence (0<α<1) determines that the GHZ state and the W state belong to the same hierarchy, and satisfies the requirement that the GHZ state is more entangled than the W state in multiqubit systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信