聚硅氧烷改性高岭土纳米复合涂层在纤维增强聚合物复合材料结构上的集成:第二部分——结冰/除冰、自清洁、砂纸磨损和水浸性能

IF 8.1 2区 材料科学 Q1 ENGINEERING, MANUFACTURING
Halil Burak Kaybal , Hayrettin Duzcukoglu , Ramazan Asmatulu
{"title":"聚硅氧烷改性高岭土纳米复合涂层在纤维增强聚合物复合材料结构上的集成:第二部分——结冰/除冰、自清洁、砂纸磨损和水浸性能","authors":"Halil Burak Kaybal ,&nbsp;Hayrettin Duzcukoglu ,&nbsp;Ramazan Asmatulu","doi":"10.1016/j.compositesa.2025.108879","DOIUrl":null,"url":null,"abstract":"<div><div>Cold weather conditions such as frost, snow, and freezing rain can limit the performance of fiber-reinforced composites, commonly used in aviation, defense, automotive, and other industries, potentially causing damage. Ice accumulation on surfaces can disrupt systems and damage components. Superhydrophobic (SH) surfaces offer a solution to prevent ice formation. This study explores the development of SH nanocomposite coatings based on polysiloxane-modified halloysite nanoclay (HNC) for glass, carbon, and Kevlar composites. The coatings’ effectiveness in preventing and removing ice was evaluated through various tests, including ice adhesion and air-blowing tests. The results showed that the SH coatings enhanced ice dissipation, particularly for carbon fiber composites. Despite slight changes in water contact angle after repeated tests, the coatings retained SH properties. Self-cleaning and wear tests demonstrated that the coatings successfully repelled dust and pollutants, while maintaining mechanical durability. This work offers a promising approach to improve ice-prevention performance in critical industrial applications.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"193 ","pages":"Article 108879"},"PeriodicalIF":8.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of polysiloxane-modified halloysite nanoclay nanocomposite coatings on fiber-reinforced polymeric composites structures: Part II—Icing/deicing, self-cleaning, sandpaper abrasion, and water immersion performances\",\"authors\":\"Halil Burak Kaybal ,&nbsp;Hayrettin Duzcukoglu ,&nbsp;Ramazan Asmatulu\",\"doi\":\"10.1016/j.compositesa.2025.108879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cold weather conditions such as frost, snow, and freezing rain can limit the performance of fiber-reinforced composites, commonly used in aviation, defense, automotive, and other industries, potentially causing damage. Ice accumulation on surfaces can disrupt systems and damage components. Superhydrophobic (SH) surfaces offer a solution to prevent ice formation. This study explores the development of SH nanocomposite coatings based on polysiloxane-modified halloysite nanoclay (HNC) for glass, carbon, and Kevlar composites. The coatings’ effectiveness in preventing and removing ice was evaluated through various tests, including ice adhesion and air-blowing tests. The results showed that the SH coatings enhanced ice dissipation, particularly for carbon fiber composites. Despite slight changes in water contact angle after repeated tests, the coatings retained SH properties. Self-cleaning and wear tests demonstrated that the coatings successfully repelled dust and pollutants, while maintaining mechanical durability. This work offers a promising approach to improve ice-prevention performance in critical industrial applications.</div></div>\",\"PeriodicalId\":282,\"journal\":{\"name\":\"Composites Part A: Applied Science and Manufacturing\",\"volume\":\"193 \",\"pages\":\"Article 108879\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part A: Applied Science and Manufacturing\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359835X25001733\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25001733","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

寒冷的天气条件,如霜冻、雪和冻雨,会限制纤维增强复合材料的性能,通常用于航空、国防、汽车和其他行业,可能造成损害。表面结冰会破坏系统并损坏部件。超疏水(SH)表面提供了一种防止结冰的解决方案。本研究探讨了基于聚硅氧烷改性高岭土纳米粘土(HNC)的玻璃、碳和凯夫拉复合材料的SH纳米复合涂层的发展。通过各种测试,包括冰附着和吹气测试,评估了涂层的防冰和除冰效果。结果表明,SH涂层增强了冰的耗散,特别是对于碳纤维复合材料。尽管反复试验后水接触角略有变化,但涂层保持了SH性能。自清洁和磨损测试表明,涂层成功地排斥灰尘和污染物,同时保持机械耐久性。这项工作为提高关键工业应用中的防冰性能提供了一种有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integration of polysiloxane-modified halloysite nanoclay nanocomposite coatings on fiber-reinforced polymeric composites structures: Part II—Icing/deicing, self-cleaning, sandpaper abrasion, and water immersion performances
Cold weather conditions such as frost, snow, and freezing rain can limit the performance of fiber-reinforced composites, commonly used in aviation, defense, automotive, and other industries, potentially causing damage. Ice accumulation on surfaces can disrupt systems and damage components. Superhydrophobic (SH) surfaces offer a solution to prevent ice formation. This study explores the development of SH nanocomposite coatings based on polysiloxane-modified halloysite nanoclay (HNC) for glass, carbon, and Kevlar composites. The coatings’ effectiveness in preventing and removing ice was evaluated through various tests, including ice adhesion and air-blowing tests. The results showed that the SH coatings enhanced ice dissipation, particularly for carbon fiber composites. Despite slight changes in water contact angle after repeated tests, the coatings retained SH properties. Self-cleaning and wear tests demonstrated that the coatings successfully repelled dust and pollutants, while maintaining mechanical durability. This work offers a promising approach to improve ice-prevention performance in critical industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composites Part A: Applied Science and Manufacturing
Composites Part A: Applied Science and Manufacturing 工程技术-材料科学:复合
CiteScore
15.20
自引率
5.70%
发文量
492
审稿时长
30 days
期刊介绍: Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信