基于三分量路径结构连通性的超立方体容错分析

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Bo Zhu , Shumin Zhang , Jou-Ming Chang , Jinyu Zou
{"title":"基于三分量路径结构连通性的超立方体容错分析","authors":"Bo Zhu ,&nbsp;Shumin Zhang ,&nbsp;Jou-Ming Chang ,&nbsp;Jinyu Zou","doi":"10.1016/j.dam.2025.03.021","DOIUrl":null,"url":null,"abstract":"<div><div>Interconnection networks are essential in parallel computing and network science nowadays. Network failures are inevitable during operation and result in inestimable losses. Hence, designing an interconnection network with excellent performance is necessary. Reliability is a key indicator of the performance of interconnection networks, and its research originated from the first telecommunication switching network system. The failure of elements in a network system reduces overall communication capacity, leading to network congestion and system failure, typically measured by connectivity. In this paper, we introduce a new type of conditional connectivity of a graph <span><math><mi>G</mi></math></span>, termed <span><math><mi>r</mi></math></span>-component <span><math><mi>H</mi></math></span>-structure connectivity and denoted as <span><math><mrow><mi>c</mi><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>;</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>. Then, we investigate 3-component <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-structure connectivity for hypercube networks <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and acquire the result <span><span><span><math><mrow><mi>c</mi><msub><mrow><mi>κ</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>;</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><mtable><mtr><mtd><mn>2</mn><mi>n</mi><mo>−</mo><mn>4</mn><mspace></mspace></mtd><mtd><mtext>if </mtext><mi>k</mi><mo>=</mo><mn>2</mn><mo>;</mo></mtd></mtr><mtr><mtd><mrow><mo>⌈</mo><mrow><mfrac><mrow><mn>4</mn><mi>n</mi><mo>−</mo><mn>5</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow><mo>⌉</mo></mrow><mspace></mspace></mtd><mtd><mtext>for </mtext><mi>k</mi><mo>≥</mo><mn>4</mn><mtext> even</mtext><mo>;</mo></mtd></mtr><mtr><mtd><mrow><mo>⌈</mo><mrow><mfrac><mrow><mn>4</mn><mi>n</mi><mo>−</mo><mn>5</mn></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mrow><mo>⌉</mo></mrow><mspace></mspace></mtd><mtd><mtext>for </mtext><mi>k</mi><mo>≥</mo><mn>3</mn><mtext> odd</mtext><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span></div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 111-123"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault-tolerability analysis of hypercubes based on 3-component path-structure connectivity\",\"authors\":\"Bo Zhu ,&nbsp;Shumin Zhang ,&nbsp;Jou-Ming Chang ,&nbsp;Jinyu Zou\",\"doi\":\"10.1016/j.dam.2025.03.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Interconnection networks are essential in parallel computing and network science nowadays. Network failures are inevitable during operation and result in inestimable losses. Hence, designing an interconnection network with excellent performance is necessary. Reliability is a key indicator of the performance of interconnection networks, and its research originated from the first telecommunication switching network system. The failure of elements in a network system reduces overall communication capacity, leading to network congestion and system failure, typically measured by connectivity. In this paper, we introduce a new type of conditional connectivity of a graph <span><math><mi>G</mi></math></span>, termed <span><math><mi>r</mi></math></span>-component <span><math><mi>H</mi></math></span>-structure connectivity and denoted as <span><math><mrow><mi>c</mi><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>;</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span>. Then, we investigate 3-component <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>-structure connectivity for hypercube networks <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> and acquire the result <span><span><span><math><mrow><mi>c</mi><msub><mrow><mi>κ</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>;</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mfenced><mrow><mtable><mtr><mtd><mn>2</mn><mi>n</mi><mo>−</mo><mn>4</mn><mspace></mspace></mtd><mtd><mtext>if </mtext><mi>k</mi><mo>=</mo><mn>2</mn><mo>;</mo></mtd></mtr><mtr><mtd><mrow><mo>⌈</mo><mrow><mfrac><mrow><mn>4</mn><mi>n</mi><mo>−</mo><mn>5</mn></mrow><mrow><mi>k</mi></mrow></mfrac></mrow><mo>⌉</mo></mrow><mspace></mspace></mtd><mtd><mtext>for </mtext><mi>k</mi><mo>≥</mo><mn>4</mn><mtext> even</mtext><mo>;</mo></mtd></mtr><mtr><mtd><mrow><mo>⌈</mo><mrow><mfrac><mrow><mn>4</mn><mi>n</mi><mo>−</mo><mn>5</mn></mrow><mrow><mi>k</mi><mo>+</mo><mn>1</mn></mrow></mfrac></mrow><mo>⌉</mo></mrow><mspace></mspace></mtd><mtd><mtext>for </mtext><mi>k</mi><mo>≥</mo><mn>3</mn><mtext> odd</mtext><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mrow></math></span></span></span></div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"370 \",\"pages\":\"Pages 111-123\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25001477\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001477","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

互连网络是当今并行计算和网络科学的重要组成部分。网络故障在运行过程中不可避免,造成不可估量的损失。因此,设计一个性能优良的互联网络是必要的。可靠性是互连网络性能的关键指标,其研究始于第一个电信交换网络系统。网络系统中元素的故障降低了整体通信容量,导致网络拥塞和系统故障,通常通过连接性来衡量。本文引入了图G的一种新的条件连通性,称为r-分量H结构连通性,记为cκr(G;H)。然后,我们研究了超立方体网络Qn的三分量Pk-结构连通性,得到了当k=2时,cκ3(Qn;Pk)=2n−4k;当k≥4时,为偶数;当k≥3时,为奇数,为4n−5k+1;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault-tolerability analysis of hypercubes based on 3-component path-structure connectivity
Interconnection networks are essential in parallel computing and network science nowadays. Network failures are inevitable during operation and result in inestimable losses. Hence, designing an interconnection network with excellent performance is necessary. Reliability is a key indicator of the performance of interconnection networks, and its research originated from the first telecommunication switching network system. The failure of elements in a network system reduces overall communication capacity, leading to network congestion and system failure, typically measured by connectivity. In this paper, we introduce a new type of conditional connectivity of a graph G, termed r-component H-structure connectivity and denoted as cκr(G;H). Then, we investigate 3-component Pk-structure connectivity for hypercube networks Qn and acquire the result cκ3(Qn;Pk)=2n4if k=2;4n5kfor k4 even;4n5k+1for k3 odd.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信